首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
X-ray structures are known for three members of the Major Facilitator Superfamily (MFS) of membrane transporter proteins, thus enabling the use of homology modeling to extrapolate to other MFS members. However, before employing such models for, e.g., mutational or docking studies, it is essential to develop a measure of their quality. To aid development of such metrics, two disparate MFS members (NupG and GLUT1) have been modeled. In addition, control models were created with shuffled sequences, to mimic poor quality homology models. These models and the template crystal structures have been examined in terms of both static and dynamic indicators of structural quality. Comparison of the behavior of modeled structures with the crystal structures in molecular dynamics simulations provided a metric for model quality. Docking of the inhibitor forskolin to GLUT1 and to a control model revealed significant differences, indicating that we may identify accurate models despite low sequence identity between target sequences and templates.  相似文献   

2.
Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the "rocker switch" may apply to certain MFS transporters, intermediate "tilted" states may exist under certain circumstances or as transitional structures. Although wet lab experimental confirmation is required, our results suggest that transport mechanisms in this transporter family should probably not be assumed to be conserved simply based on standard structural homology considerations. Furthermore, steered molecular dynamics elucidating energetic interactions of ligands with amino acid residues in an appropriately modeled transporter may have predictive value in understanding the impact of mutations and/or polymorphisms on transporter function.  相似文献   

3.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

4.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

5.
MdfA is an Escherichia coli multidrug transporter of the major facilitator superfamily (MFS) of secondary transporters. Although several aspects of multidrug recognition by MdfA have been characterized, better understanding the detailed mechanism of its function requires structural information. Previous studies have modeled the 3D structures of MFS proteins, based on the X-ray structure of LacY and GlpT. However, because of poor sequence homology, between LacY, GlpT, and MdfA additional constraints were required for a reliable homology modeling. Using an algorithm that predicts the angular orientation of each transmembrane helix (TM) (kPROT), we obtained a remarkably similar pattern for the 12 TMs of MdfA and those of GlpT and LacY, suggesting that they all have similar helix packing. Consequently, a 3D model was constructed for MdfA by structural alignment with LacY and GlpT, using the kPROT results as an additional constraint. Further refinement and a preliminary evaluation of the model were achieved by correlated mutation analysis and the available experimental data. Surprisingly, in addition to the previously characterized membrane-embedded glutamate at position 26, the model suggests that Asp34 and Arg112 are located within the membrane, on the same face of the cavity as Glu26. Importantly, Arg112 is evolutionarily conserved in secondary drug transporters, and here we show that a positive charge at this position is absolutely essential for multidrug transport by MdfA.  相似文献   

6.
Parasitic protozoa are unable to synthesise purines de novo and thus depend on the uptake of nucleosides and nucleobases across their plasma membrane through specific transporters. A number of nucleoside and nucleobase transporters from Trypanosoma brucei brucei and Leishmania major have recently been characterised and shown to belong to the equilibrative nucleoside transporter (ENT) family. A number of studies have demonstrated the functional importance of particular transmembrane segments (TMS) in nucleoside-specific ENT proteins. TbNBT1, one of only three bona fide nucleobase-selective members of the ENT family, has previously been shown to be a high-affinity transporter for purine nucleobases and guanosine. In this study, we use the Saccharomyces cerevisiae expression system to build a biochemical model of how TbNBT1 recognises nucleobases. We next performed random in vitro and site-directed mutagenesis to identify residues critical for TbNBT1 function. The identification of residues likely to contribute to permeant binding, when combined with a structural model of TbNBT1 obtained by homology threading, yield a tentative three-dimensional model of the transporter binding site that is consistent with the binding model emerging from the biochemical data. The model strongly suggests the involvement of TMS5, TMS7 and TMS8 in TbNBT1 function. This situation is very similar to that concerning transporters of the major facilitator superfamily (MFS), one of which was used as a template for the threading. This point raises the possibility that ENT and MFS carriers, despite being considered evolutionarily distinct, might in fact share similar topologies and substrate translocations pathways.  相似文献   

7.
The Amino acid-Polyamine-Organocation (APC) superfamily is the main family of amino acid transporters found in all domains of life and one of the largest families of secondary transporters. Here, using a sensitive homology threading approach and modelling we show that the predicted structure of APC members is extremely similar to the crystal structures of several prokaryotic transporters belonging to evolutionary distinct protein families with different substrate specificities. All of these proteins, despite having no primary amino acid sequence similarity, share a similar structural core, consisting of two V-shaped domains of five transmembrane domains each, intertwined in an antiparallel topology. Based on this model, we reviewed available data on functional mutations in bacterial, fungal and mammalian APCs and obtained novel mutational data, which provide compelling evidence that the amino acid binding pocket is located in the vicinity of the unwound part of two broken helices, in a nearly identical position to the structures of similar transporters. Our analysis is fully supported by the evolutionary conservation and specific amino acid substitutions in the proposed substrate binding domains. Furthermore, it allows predictions concerning residues that might be crucial in determining the specificity profile of APC members. Finally, we show that two cytoplasmic loops constitute important functional elements in APCs. Our work along with different kinetic and specificity profiles of APC members in easily manipulated bacterial and fungal model systems could form a unique framework for combining genetic, in-silico and structural studies, for understanding the function of one of the most important transporter families.  相似文献   

8.
Major facilitator superfamily (MFS) is a large class of secondary active transporters widely expressed across all life kingdoms. Although a common 12‐transmembrane helix‐bundle architecture is found in most MFS crystal structures available, a common mechanism of energy coupling remains to be elucidated. Here, we discuss several models for energy‐coupling in the transport process of the transporters, largely based on currently available structures and the results of their biochemical analyses. Special attention is paid to the interaction between protonation and the negative‐inside membrane potential. Also, functional roles of the conserved sequence motifs are discussed in the context of the 3D structures. We anticipate that in the near future, a unified picture of the functions of MFS transporters will emerge from the insights gained from studies of the common architectures and conserved motifs.  相似文献   

9.
Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters.  相似文献   

10.
Chemotaxis to the aromatic acid 4-hydroxybenzoate (4-HBA) by Pseudomonas putida is mediated by PcaK, a membrane-bound protein that also functions as a 4-HBA transporter. PcaK belongs to the major facilitator superfamily (MFS) of transport proteins, none of which have so far been implicated in chemotaxis. Work with two well-studied MFS transporters, LacY (the lactose permease) and TetA (a tetracycline efflux protein), has revealed two stretches of amino acids located between the second and third (2-3 loop) and the eighth and ninth (8-9 loop) transmembrane regions that are required for substrate transport. These sequences are conserved among most MFS transporters, including PcaK. To determine if PcaK has functional requirements similar to those of other MFS transport proteins and to analyze the relationship between the transport and chemotaxis functions of PcaK, we generated strains with mutations in amino acid residues located in the 2-3 and 8-9 loops of PcaK. The mutant proteins were analyzed in 4-HBA transport and chemotaxis assays. Cells expressing mutant PcaK proteins had a range of phenotypes. Some transported at wild-type levels, while others were partially or completely defective in 4-HBA transport. An aspartate residue in the 8-9 loop that has no counterpart in LacY and TetA, but is conserved among members of the aromatic acid/H(+) symporter family of the MFS, was found to be critical for 4-HBA transport. These results indicate that conserved amino acids in the 2-3 and 8-9 loops of PcaK are required for 4-HBA transport. Amino acid changes that decreased 4-HBA transport also caused a decrease in 4-HBA chemotaxis, but the effect on chemotaxis was sometimes slightly more severe. The requirement of PcaK for both 4-HBA transport and chemotaxis demonstrates that P. putida has a chemoreceptor that differs from the classical chemoreceptors described for Escherichia coli and Salmonella typhimurium.  相似文献   

11.
Nucleotide-sugar transporters (NSTs) form a family of structurally related transmembrane proteins that transport nucleotide-sugars from the cytoplasm to the endoplasmic reticulum and Golgi lumen. In these organelles, activated sugars are substrates for various glycosyltransferases involved in oligo- and polysaccharide biosynthesis. The Arabidopsis thaliana genome contains more than 40 members of this transporter gene family, of which only a few are functionally characterized. In this study, two Arabidopsis UDP-galactose transporter cDNAs (UDP-GalT1 and UDP-GalT2) are isolated by expression cloning using a Chinese hamster ovary cell line (CHO-Lec8) deficient in UDP-galactose transport. The isolated genes show only 21% identity to each other and very limited sequence identity with human and yeast UDP-galactose transporters and other NSTs. Despite this low overall identity, the two proteins clearly belong to the same gene family. Besides complementing Lec8 cells, the two NSTs are shown to transport exclusively UDP-galactose by an in vitro NST assay. The most homologous proteins with known function are plant transporters that locate in the inner chloroplast membrane and transport triose-phosphate, phosphoenolpyruvate, glucose-6-phosphate, and xylulose 5-phosphate. Also, the latter proteins are members of the same family, which therefore has been named the NST/triose-phosphate transporter family.  相似文献   

12.
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.  相似文献   

13.
14.
The human solute carriers (SLCs) comprise over 400 different transporters, organized into 65 families (http://slc.bioparadigms.org/) based on their sequence homology and transport function. SLCs are responsible for transporting extraordinarily diverse solutes across biological membranes, including inorganic ions, amino acids, lipids, sugars, neurotransmitters and drugs. Most of these membrane proteins function as coupled symporters (co-transporters) utilizing downhill ion (H+ or Na+) gradients as the driving force for the transport of substrate against its concentration gradient into cells. Other members work as antiporters (exchangers) that typically contain a single substrate-binding site with an alternating access mode of transport, while a few members exhibit channel-like properties. Dysfunction of SLCs is correlated with numerous human diseases and therefore they are potential therapeutic drug targets. In this review, we identified all of the SLC crystal structures that have been determined, most of which are from prokaryotic species. We further sorted all the SLC structures into four main groups with different protein folds and further discuss the well-characterized MFS (major facilitator superfamily) and LeuT (leucine transporter) folds. This review provides a systematic analysis of the structure, molecular basis of substrate recognition and mechanism of action in different SLC family members.  相似文献   

15.
Multidrug transporters are ubiquitous proteins, and, based on amino acid sequence similarities, they have been classified into several families. Here we characterize a cluster of archaeal and bacterial proteins from the major facilitator superfamily (MFS). One member of this family, the vesicular monoamine transporter (VMAT) was previously shown to remove both neurotransmitters and toxic compounds from the cytoplasm, thereby conferring resistance to their effects. A BLAST search of the available microbial genomes against the VMAT sequence yielded sequences of novel putative multidrug transporters. The new sequences along with VMAT form a distinct cluster within the dendrogram of the MFS, drug-proton antiporters. A comparison with other proteins in the family suggests the existence of a potential ion pair in the membrane domain. Three of these genes, from Mycobacterium smegmatis, Corynebacterium glutamicum, and Halobacterium salinarum, were cloned and functionally expressed in Escherichia coli. The proteins conferred resistance to fluoroquinolones and chloramphenicol (at concentrations two to four times greater than that of the control). Measurement of antibiotic accumulation in cells revealed proton motive force-dependent transport of those compounds.  相似文献   

16.
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.  相似文献   

17.
Structural biology of bacterial iron uptake   总被引:3,自引:0,他引:3  
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.  相似文献   

18.
The antiporters, uniporters and symporters are the functional classes of MFS that play major role in ions homeostasis, regulation of pumps and channels, membrane structure, transporters activity in tolerance to abiotic stresses. Major facilitator superfamily (MFS) encodes Na+/H+ antiporter that are considered as being sensors of the molecule transports. A large number of MFS proteins have been identified in several plants, rice, maize, Arabidopsis etc. However, the majority of proteins in sorghum are described as putative, uncharacterized till date. This suggested that identified proteins of MFS in sorghum are far from saturation. Hence, we developed gene ontology (GO) terms semantic similarity based method using GOSemSim measure of R package. As a result, total 2,568 high (100 %) semantic similar orthologous proteins from 7 plant species were obtained. These data were used to predict function of 257 putative uncharacterized proteins from 18 families of MFS in Sorghum. Consequently, the identified proteins belonged to the function of regulation of pumps and channels, membrane structure, transporters activity, ions homeostasis, transporter mechanisms and binding process. These identified functions appear to have a distinct mechanism of salt-stress adaptation in plants. The proposed method will help in further identifying new proteins that can help in the development of agronomically and economically important plants.  相似文献   

19.
The putative Major Facilitator Superfamily (MFS) transporter, SV2A, is the target for levetiracetam (LEV), which is a successful anti-epileptic drug. Furthermore, SV2A knock out mice display a severe seizure phenotype and die after a few weeks. Despite this, the mode of action of LEV is not known at the molecular level. It would be extremely desirable to understand this more fully in order to aid the design of improved anti-epileptic compounds. Since there is no structure for SV2A, homology modelling can provide insight into the ligand-binding site. However, it is not a trivial process to build such models, since SV2A has low sequence identity to those MFS transporters whose structures are known. A further level of complexity is added by the fact that it is not known which conformational state of the receptor LEV binds to, as multiple conformational states have been inferred by tomography and ligand binding assays or indeed, if binding is exclusive to a single state. Here, we explore models of both the inward and outward facing conformational states of SV2A (according to the alternating access mechanism for MFS transporters). We use a sequence conservation analysis to help guide the homology modelling process and generate the models, which we assess further with Molecular Dynamics (MD). By comparing the MD results in conjunction with docking and simulation of a LEV-analogue used in radioligand binding assays, we were able to suggest further residues that line the binding pocket. These were confirmed experimentally. In particular, mutation of D670 leads to a complete loss of binding. The results shed light on the way LEV analogues may interact with SV2A and may help with the on-going design of improved anti-epileptic compounds.  相似文献   

20.
Recently, a 3.65 ? resolution structure of the transporter NorM from the multidrug and toxic compound extrusion family has been determined in the outward-facing conformation. This antiporter uses electrochemical gradients to drive substrate export of a large class of antibiotic and toxic compounds in exchange for small monovalent cations (H(+) and Na(+)), but the molecular details of this mechanism are still largely unknown. Here we report all-atom molecular dynamics simulations of NorM, with and without the bound Na(+) cation and at different ion concentrations. Spontaneous binding of Na(+) is observed in several independent simulations with transient ion binding to D36 being necessary to reach the final binding site for which two competitive binding modes occur. Finally, the simulations indicate that the extracellular vestibule of the transporter invariably loses its characteristic V shape indicated by the crystallographic data, and it is reduced to a narrow permeation pathway lined by polar residues that can act as a specific pore for the transport of small cations. This event, together with the available structures of evolutionarily related transporters of the major facilitator superfamily (MFS), suggests that differences in the hydrophobic content of the extracellular vestibule may be characteristic of multidrug resistance transporters in contrast to substrate-selective members of the MFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号