首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cellulases are enzymatic proteins which hydrolyze cellulose polymers to smaller oligosaccharides, cellobiose and glucose. They consist in three major types of enzymes: endoglucanases (EC 3.2.1.4), cellobiohydrolases (EC 3.2.1.91) and beta-glucosidases (EC 3.2.1.21) which play an essential role in carbon turnover of forest ecosystem. The aim of this study was firstly to determine the parameters (i.e. buffer type, pH, temperature, quantity of litter, incubation time and reagent type) which affect the measurement of cellulase activity in a sclerophyllous forest litter, and secondly to compare two methods for measuring cellulase activity: a direct method and an extraction method. In the direct method, the litter was directly incubated with a buffered solution containing the enzyme substrate, whereas in the extraction method, the cellulases were firstly extracted before measuring their activity. The results were compared with other studies about soil cellulase activity, and it appeared that several parameters (buffer type, pH, temperature and sample quantity) which influence the measurement of cellulase activity differ according to whether a soil or a litter is considered. Concerning the procedure used for the measurement of cellulase activity, results showed that the activity values were higher when using an extraction procedure than when using a direct procedure. The extraction procedure, combined with a concentration stage of the extract, also allowed electrophoretic analysis (PAGE) of the cellulases extracted from the litter. The electrophoretic pattern revealed two cellulase isoenzymes which may be related to the occurrence of two pH-activity peaks of these enzymes when citrate buffer was used for the measurement of cellulase activity in the litter.  相似文献   

2.
Splenocytes derived from mice inoculated with a commercial cellulase preparation or purified cellulases were fused with a stable myeloma cell line (SP2/0). Specific monoclonal antibodies to cellobiohydrolases I and II and endoglucanases I and II were established. In addition to specific monoclonal antibodies, we were also able to establish stable hybridoma cell lines which produced monoclonal antibodies that recognized similar epitopes possessed by two or more of the above cellulases. By obtaining monospecific antibodies for all four individual cellulases, the role and function of the individual cellulases can thus be studied in greater detail.  相似文献   

3.
Splenocytes derived from mice inoculated with a commercial cellulase preparation or purified cellulases were fused with a stable myeloma cell line (SP2/0). Specific monoclonal antibodies to cellobiohydrolases I and II and endoglucanases I and II were established. In addition to specific monoclonal antibodies, we were also able to establish stable hybridoma cell lines which produced monoclonal antibodies that recognized similar epitopes possessed by two or more of the above cellulases. By obtaining monospecific antibodies for all four individual cellulases, the role and function of the individual cellulases can thus be studied in greater detail.  相似文献   

4.
Method of the removal of lignin and reuse of cellulases for a continuous saccharification of lignocelluloses were investigated. Only lignin could be separated from hydrolysates by differences in the settling velocity; it was removed from the saccharification process by flocculation with chitosan without loss of cellulases. The ultra-filtration membrane PM10 (Amicon) could be used for recovery of cellulases, but the membrane UH-1 (Toyo Roshi) was better for this purpose, because no cellulases leaked from the membrane, and the amount of cellulase adsorbed to the membrane was less. The cellulases were inactivated by vigorous agitation of the solution in an ultra-filtration device. The loss of cellulase activity by such agitation increased with agitation time, but could be controlled by recovery at a low speed of agitation, so the cellulases could be reused.  相似文献   

5.
The substrate specificities of three cellulases and a beta-glucosidase purified from Thermoascus aurantiacus were examined. All three cellulases partially degraded native cellulose. Cellulase I, but not cellulase II and cellulase III, readily hydrolyzed the mixed beta-1,3; beta-1,6-polysaccharides such as carboxymethyl-pachyman, yeast glucan and laminarin. Both cellulase I and the beta-glucosidase degraded xylan, and it is proposed that the xylanase activity is an inherent feature of these two enzymes. Lichenin (beta-1,4; beta-1,3) was degraded by all three cellulases. Cellulase II cannot degrade carboxymethyl-cellulose, and with filter paper as substrate the end product was cellobiose, which indicates that cellulase II is an exo-beta-1,4-glucan cellobiosylhydrolase. Degradation of cellulose (filter paper) can be catalysed independently by each of the three cellulases; there was no synergistic effect between any of the cellulases, and cellobiose was the principal product of degradation. The mode of action of one cellulase (cellulase III) was examined by using reduced cellulodextrins. The central linkages of the cellulodextrins were the preferred points of cleavage, which, with the rapid decrease in viscosity of carboxymethyl-cellulose, confirmed that cellulase III was an endocellulase. The rate of hydrolysis increased with chain length of the reduced cellulodextrins, and these kinetic data indicated that the specificity region of cellulase III was five or six glucose units in length.  相似文献   

6.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

7.
Enzymatic properties of Alcaligenes faecalis cells immobilized in polyacrylamide were characterized and compared with those reported for the extracted enzyme, and with those measured for free cells. Many of the properties reflected those of the extracted enzyme rather than those measured in the free whole cells prior to immobilization, suggesting cell disruption during immobilization. These properties included the pH activity profile, a slightly broader pH stability profile, and the activation energy. Electron micrographs showed evidence of cell debris among the polymer matrix. The immobilized cells were not viable, and did not consume glucose. Thermal stability was less after immobilization with a half-life of 16 h at 45 degrees C, and 3.5 h at 50 degrees C. The immobilized preparation was more stable when stored lyophilized rather than in buffer, losing 23 and 52% activity, respectively, after six months. The enzyme was irreversibly inhibited by both acetate and citrate buffers. If the immobilized enzyme is to be used in conjunction with cellulases from Trichoderma reesei for cellulase saccharification, the optimal conditions would be pH 5.5 and 45 degrees C in a buffer containing no carboxylic acid groups.  相似文献   

8.
Brine shrimp (Artemia salina) belong to a group of crustaceans that feed on microalgae and require a cellulase enzyme that can be used in ethanol production from marine algae. Protein with potential cellulase activity was purified and the activity analyzed under different conditions. After initial identification of cellulase activity by CMC cellulase, surface sterilization and PCR using 16s rRNA primers was conducted to confirm that the cellulase activity was not produced from contaminating bacteria. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. After the final purification, a 70-fold increase in specific enzyme activity was observed. SDS–PAGE results revealed that the cellulase enzyme had a molecular mass of 96 kDa. Temperature, pH, and salinity values were found to be optimal at 55 °C, pH 8.0, and 600 mM NaCl, respectively. Specifically, the enzyme showed a fivefold increase in enzyme activity in seawater compared to 600 mM NaCl in phosphate buffer. Further analysis of the purified enzyme by molecular spectrometry showed no match to known cellulases, indicating this enzyme could be a novel halophilic cellulase that can be used for the production of bioethanol from marine macroalgae.  相似文献   

9.
In this study, different mole fractions of pure Thermomonospora fusca E(5) and E(3), plus Trichoderma reesei CBHI were studied for reducing sugar production at 2 h, degree of synergism, and cellulose binding. In addition, the effects of introducing the Caldocellum saccharolyticum beta-glucosidase into this cellulase system were investigated. The cellulases used were purified to homogeneity. Avicel PH 102 (4% w/w solution in 0.05 sodium acetate pH 5.5 buffer) was the substrate. Reactions were run at 50 degrees C for 2 h using total cellulase concentrations of 8.3 or 12.2 muM. A bimixture of T. fusca E(3) and T. reesei CBHI was very effective in hydrolyzing microcrystalline cellulose (9.1% conversion). The addition of endoglucanase E(5) to the mixture only increased conversion to 9.8%. However, when both E(5) and beta-glucosidase were added, conversion increased to 14%. It was also observed that increasing total cellulase concentration beyond 8.3 muM did little to increase percent conversion of cellulose into glucose. The results of the binding studies indicate no competition for binding sites between the endo- and exocellulases. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
The order Actinomycetales includes a number of genera that contain species that actively degrade cellulose and these include both mesophilic and facultative thermophilic species. Cellulases produced by strains from two of the genera containing thermophilic organisms have been studied extensively: Microbispora bispora and Thermomonospora fusca. Fractionation of M. bispora cellulases has identified six different enzymes, all of which were purified to near homogeneity and partially characterized. Two of these enzymes appear to be exocellulases and gave synergism with each other and with the endocellulases. The structural genes of five M. bispora cellulases have been cloned and one was sequenced. Fractionation of T. fusca cellulases has identified five different enzymes, all of which were purified to near homogeneity and partially characterized. One of the T. fusca enzymes gives synergism in the hydrolysis of crystalline cellulose with several T. fusca endocellulases and with Trichoderma reesei CBHI but not with T. reesei CBHII. Each T. fusca cellulase contains distinct catalytic and cellulose binding domains. The structural genes of four of the T. fusca endoglucanases have been cloned and sequenced, while three cellulase genes have been cloned from "T. curvata". The T. fusca cellulase genes are expressed at a low level in Escherichia soli, but at a high level in Streptomyces lividans. Sequence comparisons have shown that there are no significant amino acid homologies between any of the catalytic domains of the four T. fusca cellulases, but each of them shows extensive homology to several other cellulases and fits in one of the five existing cellulase gene families. There have been extensive studies of the regulation of the synthesis of these cellulases and a number of regulatory mutants have been isolated. This work has shown that the different T. fusca cellulases are coordinately regulated over a 100-fold range by two independent controls; induction by cellobiose and repression by any good carbon source.  相似文献   

11.
Cotton woven fabrics which were previously dyed with a reactive dye were treated with a commercial cellulase preparation. Dyeing with a reactive dye for cotton apparently inhibited the weight loss activity and saccharification activity of cellulase. In addition, dyed cotton was treated with highly purified cellulases which were exo-type cellulases (Cellobiohydrolase I (CBH I) and Cellobiohydrolase II (CBH II)) and endo-type cellulase (Endoglucanase II (EG II)). Exo-type cellulases were inhibited more than endo-type cellulase by dyeing in the case of saccharification activity. CBH I was severely inhibited by dyeing as compared with CBH II or EG II from the viewpoint of morphological changes in the fiber surface. Dyes on the cellulose substrates severely influenced CBH I in spite of the rare modification, because CBH I hydrolyzed cellulose with true-processive action. The change in the activity of each cellulase component on dyed cotton can affect the synergistic action of cellulases.  相似文献   

12.
Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA minicellulosomes and cellulase minicellulosomes were found to degrade corn cell walls synergistically but not purified substrates such as xylan and crystalline cellulose. The mixture of XynA and cellulases at a molar ratio of 1:2 showed the highest synergistic effect of 1.6 on corn cell wall degradation. The amounts both of xylooligosaccharides and cellooligosaccharides liberated from corn cell walls were increased by the synergistic action of XynA and cellulases. Although synergistic effects on corn cell wall degradation were found in simultaneous reactions with XynA and cellulases, no synergistic effects were observed in sequential reactions. The possible mechanism of synergism between XynA and cellulases is discussed.  相似文献   

13.
Cellulolytic mode of action of the two highly purified exo- and endo-type cellulases from Irpex lacteus on pure Valonia cellulose was investigated. Electron microscopy substantiated that both cellulases are adsorbed preferentially into the internal parts of microfibrils in the network structure of the cellulose at initial stages before enzymatic hydrolysis, and that the adsorption ratio of both cellulases onto the external surfaces of microfibrils increased with incubation time although this tendency was less remarkable with the exo-type cellulase than with the endo-type one. The exo-type cellulase exhibited relatively high activity producing cellobiose throughout 12-h incubation, while the endo-type cellulase produced small amounts of cellooligosaccharides. The degree of polymerization was far more suppressed by the endo-type cellulase than by the exo-type one. Degradation by the cellulases in typical exo- and endo-fashions yielded quite different morphological patterns in the microfibrils. Exo-type cellulase loosened the network structure of microfibrils and made them slightly thinner, while endo-type cellulase caused conspicuous swelling and dissolution of individual microfibrils.  相似文献   

14.
The transfer of endocytosed simian virus 40 (SV40) to the nuclear position was investigated ultrastructurally using cationized ferritin (CF), ferritin labelled concanavalin A (Fer-Con A) and Con A as cell membrane markers. In the cells incubated with these markers and SV40 at 4 degrees C, and then chased for 2 h at 37 degrees C in serum-free medium, ferritin particles representing CF and/or Fer-Con A binding sites were found in vacuoles with SV40. The membrane of some vacuoles seemed to be in contact with the outer nuclear membrane. Several ferritin particles were located in the perinuclear cisterna and within the nucleoplasm, but not within the nuclear pores. In addition, there were vacuoles with ferritin particles and SV40 near the nuclear membrane, which looked like a single diaphragm with heterochromatins inside it. The outer nuclear and vacuole membranes were often obscure in the areas where the vacuole was very close to the diaphragm. In the case of cells incubated with CF, SV40 and Con A at 4 degrees C, chased for 2 h at 37 degrees C, and then reacted with horseradish peroxidase (HRP), HRP activity showing Con A-binding sites was also observed along the nuclear side of the inner nuclear membrane as well as in the perinuclear cisterna along the outer membrane. These results confirm that SV40-induced endocytotic vacuoles fuse with the outer nuclear membrane, and further indicate that some endocytotic vacuoles may well interact directly with the diaphragm, suggesting another path for migration of SV40 into CV-1 cell nuclei besides the path going through the process of fusion of the vacuole membrane with the outer nuclear membrane.  相似文献   

15.
Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60–65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn2+, dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.  相似文献   

16.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

17.
Characterization and localization of human placental ferritin.   总被引:3,自引:0,他引:3       下载免费PDF全文
Ferritin has been purified from normal full-term human placentae and its antigenic and molecular characteristics compared with adult liver ferritin. Placental ferritin is composed predominantly of a single subunit type, co-migrating with a liver ferritin standard on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Comparison of dose-response curves in an immunoradiometric assay indicated some tissue-specific antigenicity for placental ferritin. This was supported by immunofluorescence studies on cryostat sections of human placentae by using antibodies to placental and spleen ferritin. Specific staining for placental ferritin was demonstrated within placental syncytiotrophoblast, particularly localized towards the microvillus plasma membrane. Ferritin has also been shown by electrophoretic and antigenic analysis to be present in protein fractions solubilized from isolated human syncytiotrophoblast microvillus plasma-membrane preparations, suggesting that ferritin may play an active role in the transfer of iron from maternal transferrin across the syncytiotrophoblast plasma membrane.  相似文献   

18.
Two highly purified cellulases [EC 3.2.1.4], II-A, and II-B, were obtained from the cellulase system of Trichoderma viride. Both cellulases split cellopentaose retaining the beta-configuration of the anomeric carbon atoms in the hydrolysis products at both pH 3.5 and 5.0. The Km values of cellulases II-A and II-B for cellotetraose were different, but their Vmax values were similar and those for cellooligosaccharides increased in parallel with chain length. Both cellulases produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase II-A preferentially attacked the holoside linkage of rho-nitrophenyl beta-D-cellobioside, whereas cellulase II-B attacked mainly the aglycone linkage of this cellobioside. Both cellulases were found to catalyze the synthesis of cellotriose from rho-nitrophenyl beta-D-cellobioside by transfer of a glucosyl residue, possibly to cellobiose produced in the reaction mixture. They were also found to catalyze the rapid synthesis of cellotetraose from cellobiose, with accompanying formation of cellotriose and glucose, which seemed to be produced by secondary random hydrolysis of the cellotetraose produced. The capacity to synthesize cellotetraose from cellobiose appeared to be greater with cellulase II-B than with cellulase II-A.  相似文献   

19.
Aims:  To clone and characterize genes encoding novel cellulases from metagenomes of buffalo rumens.
Methods and Results:  A ruminal metagenomic library was constructed and functionally screened for cellulase activities and 61 independent clones expressing cellulase activities were isolated. Subcloning and sequencing of 13 positive clones expressing endoglucanase and MUCase activities identified 14 cellulase genes. Two clones carried two gene clusters that may be involved in the degradation of polysaccharide nutrients. Thirteen recombinant cellulases were partially characterized. They showed diverse optimal pH from 4 to 7. Seven cellulases were most active under acidic conditions with optimal pH of 5·5 or lower. Furthermore, one novel cellulase gene, C67-1, was overexpressed in Escherichia coli , and the purified recombinant enzyme showed optimal activity at pH 4·5 and stability in a broad pH range from pH 3·5 to 10·5. Its enzyme activity was stimulated by dl -dithiothreitol.
Conclusions:  The cellulases cloned in this work may play important roles in the degradation of celluloses in the variable and low pH environment in buffalo rumen.
Significance and Impact of the Study:  This study provided evidence for the diversity and function of cellulases in the rumen. The cloned cellulases may at one point of time offer potential industrial applications.  相似文献   

20.
To investigate whether earthworm cellulases contribute to the innate immune system, the responsiveness of cellulase activity and mRNA expression to bacterial challenge was examined by zymography and RNA sequencing. A zymographic analysis revealed that the activity levels of earthworm cellulases were upregulated in response to either a bacterial (Bacillus subtilis or Escherichia coli) or LPS challenge. After the challenge, significant increases in cellulase 1 and cellulase 2 activity levels were observed within 8–16 and 16–24 h, respectively. In the coelomic fluid, both activities were significantly upregulated at 8 h post-injection with B. subtilis. Based on RNA sequencing, cellulase-related mRNAs encoding beta-1,4-endoglucanases were upregulated by 3-fold within 6 h after B. subtilis injection. Our results clearly demonstrated that earthworm cellulases are upregulated by bacterial challenge at the mRNA and protein levels. These results support the view that earthworm cellulases act as inducible humoral effectors of innate immunity against bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号