首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Yeast Saccharomyces cerevisiae oligomycin sensitivity conferring proteins (OSCP) have been expressed in Escherichia coli. Heterologous expression results in production of a protein that is identical to yeast mature OSCP, including the absence of the initiating methionine residue. Yeast OSCP expressed in E. coli has been purified to homogeneity and it is able to reconstitute oligomycin-sensitive ATPase using purified F1- and F1/OSCP-depleted membranes (electron transport particles (ETP). Binding of F1 to ETP is dependent on the addition of OSCP. Binding studies using 35S-OSCP indicated that OSCP binds to ETP with a Kd of 200 nM and a capacity of 420 pmol/mg particle protein, whereas OSCP does not interact with F1 in the absence of ETP. These data indicate that yeast OSCP must first form a specific complex with F0, which then binds F1 forming the functional complex. To identify functional domains in yeast OSCP, two deletion mutants have been made. Antibodies directed to these deletion products do not inhibit OSCP-dependent binding of F1 to ETP. However, antibodies directed against the last one-third of OSCP greatly reduce the oligomycin sensitivity of the reconstituted ATPase. These data suggest that OSCP is involved in a functional role in energy transduction or proton translocation and serves a structural role in the yeast mitochondrial ATP synthase.  相似文献   

2.
Upon treatment of beef heart mitochondrial oligomycin sensitivity conferring protein (OSCP) with [14C]-N-ethylmaleimide ( [14C]NEM) or dithiobis(nitro[14C] benzoate), 1 mol of either SH reagent was incorporated per mol of OSCP. Radiolabeling occurred at the level of the only cysteine residue, Cys-118, present in the OSCP sequence reported by Ovchinnikov et al. [Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Aldanova, N. A., Trubetskaya, O. E., Nazimov, I. V., Hundal, T., & Ernster, L. (1984) FEBS Lett. 166, 19-22]; it did not alter the biological activity of OSCP tested in a reconstituted F0-F1 system that catalyzed oligomycin-sensitive ATPase activity or ATP-Pi exchange. The parameters of [14C]NEM-OSCP binding to isolated beef heart mitochondrial F1 were assessed by equilibrium dialysis. Addition of trace amounts of Tween 20 prevented unspecific adsorption of OSCP. The binding curves showed that each F1 possesses a high-affinity OSCP binding site (Kd = 0.08 microM) and two low-affinity OSCP binding sites (Kd = 6-8 microM). Binding of OSCP to the high-affinity site on F1 is probably responsible for the ability of OSCP to confer oligomycin sensitivity to F1 in the ATPase complex.  相似文献   

3.
The requirement of bovine heart mitochondrial oligomycin sensitivity conferring protein (OSCP) in conferring dicyclohexylcarbodiimide (DCCD)-sensitivity to membrane-bound F1 was investigated by using OSCP-depleted membrane fraction (UF0) of ATP synthase. The ATPase activity of UF0-F1 was completely insensitive to DCCD while that of UF0-F1-OSCP was inhibited 95% by 16 microM DCCD. Both UF0-F1 and UF0-F1-OSCP complexes bound 5 nmol [14C]DCCD/mg UF0, and all the radioactivity was found to be associated with the DCCD-binding proteolipid. The data suggest that OSCP may be necessary for transmitting not only energy-linked signals, but also signals induced by F0 inhibitory ligands in mitochondrial energy transduction.  相似文献   

4.
Pig heart mitochondrial membranes depleted of F1 and OSCP by various treatments were analyzed for their content in alpha and beta subunits of F1 and in OSCP using monoclonal antibodies. Membrane treatments and conditions of rebinding of F1 and OSCP were optimized to reconstitute efficient NADH- and ATP-dependent proton fluxes, ATP synthesis and oligomycin-sensitive ATPase activity. F1 and OSCP can be rebound independently to depleted membranes but to avoid unspecific binding of F1 to depleted membranes (ASUA) which is not efficient for ATP synthesis, F1 must be rebound before the addition of OSCP. The rebinding of OSCP to depleted membranes reconstituted with F1 inhibits the ATPase activity of rebound F1, while it restores the ATP-driven proton flux measured by the quenching of ACMA fluorescence. The rebinding of OSCP also renders the ATPase activity of bound F1 sensitive to uncouplers. The rebinding of OSCP alone or F1 alone, does not modify the NADH-dependent proton flux, while the rebinding of both F1 and OSCP controls this flux, inducing an inhibition of the rate of NADH oxidation. Similarly, oligomycin, which seals the F0 channel even in the absence of F1 and OSCP, inhibits the rate of NADH oxidation. OSCP is required to adjust the fitting of F1 to F0 for a correct channelling of protons efficient for ATP synthesis. All reconstituted energy-transfer reactions reach their optimal value for the same amount of OSCP. This amount is consistent with a stoichiometry of two OSCP per F1 in the F0-F1 complex.  相似文献   

5.
The binding parameters of the oligomycin-sensitivity conferring protein (OSCP) in inside-out particles from beef heart mitochondria have been tested by means of two assays, the oligomycin-sensitive ATP-Pi exchange, and the oligomycin-sensitive ATP hydrolysis. The total number of OSCP binding sites in A particles was equal to 220 pmol/mg particle protein. Each mole of ATPase active site was able to bind 1.1 +/- 0.5 mol OSCP with Kd 1.7 nM.  相似文献   

6.
Structural analysis of oligomycin sensitivity-conferring protein (OSCP) revealed repeating sequences (residues 1-89, 105-190) suggesting an evolution of the protein by gene duplication. In addition to the reported homology with the delta-subunit of Escherichia coli F1ATPase, OSCP also shows a certain homology with the b-subunit of E. coli F0 and the ADP/ATP carrier of mitochondria.  相似文献   

7.
Exon trapping was used to clone portions of potential genes from human chromosome 21. One trapped sequence showed striking homology with the bovine and rat ATP synthase OSCP (oligomycin sensitivity conferring protein) subunit. We subsequently cloned the full-length human ATP synthase OSCP cDNA (GDB/HGMW approved name ATP50) from infant brain and muscle libraries and determined its nucleotide and deduced amino acid sequence (EMBL/GenBank Accession No. X83218). The encoded polypeptide contains 213 amino acids, with more than 80% identity to bovine and murine ATPase OSCP subunits and over 35% identity to Saccharomyces cerevisiae and sweet potato sequences. The human ATP50 gene is located at 21q22.1-q22.2, just proximal to D21S17, in YACs 860G11 and 838C7 of the Chumakov et al. (Nature 359:380, 1992) YAC contig. The gene is expressed in all human tissues examined, most strongly in muscle and heart. This ATP50 subunit is a key structural component of the stalk of the mitochondrial respiratory chain F1F0-ATP synthase and as such may contribute in a gene dosage-dependent manner to the phenotype of Down syndrome (trisomy 21).  相似文献   

8.
9.
Recombinant membrane proteins in Escherichia coli are either expressed at relatively low level in the cytoplasmic membrane or they accumulate as inclusion bodies. Here, we report that the abundant over-production of subunit b of E. coli F(1)F(o) ATP synthase in the mutant host strains E. coli C41(DE3) and C43(DE3) is accompanied by the proliferation of intracellular membranes without formation of inclusion bodies. Maximal levels of proliferation of intracellular membranes were observed in C43(DE3) cells over-producing subunit b. The new proliferated membranes contained all the over-expressed protein and could be recovered by a single centrifugation step. Recombinant subunit b represented up to 80% of the protein content of the membranes. The lipid:protein ratios and phospholipid compositions of the intracellular membranes differ from those of bacterial cytoplasmic membranes, and they are particularly rich in cardiolipin.  相似文献   

10.
ATP synthase preparations [complex V, proton-translocatin ATPase (adenosine triphosphatase) and oligomycin-sensitive ATPase ] contain stoicheiometric amounts of lipoic acid residues (up to 6mol of lipoic acid/mol of ATPase complex) and catalyse net ATP synthesis in an uncoupler-and oligomycin-sensitive reaction utilizing dihydrolipoate, oleoyl-CoA and oleic acid, or in a reaction utilizing oleoyl-S-lipoate. The terminal reactions of oxidative phosphorylation are thus analogous to those of substrate-level phosphorylation.  相似文献   

11.
The binding of oligomycin sensitivity conferring protein (OSCP) to soluble beef-heart mitochondrial ATPase (F1) has been investigated. OSCP forms a stable complex with F1, and the F1 · OSCP complex is capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted submitochondrial particles. The F1 · OSCP complex retains 50% of its ATPase activity upon cold exposure while free F1 is inactivated by 90% or more. Both free F1 and the F1 · OSCP complex release upon cold exposure a part—probably 1 out of 3—of their subunits; whether subunits are also lost is uncertain. The cold-treated F1 · OSCP complex is still capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted particles. OSCP also protects F1 against modification of its subunit by mild trypsin treatment. This finding together with the earlier demonstration that trypsin-modified F1 cannot bind OSCP indicates that OSCP binds to the subunit of F1 and that F1 contains three binding sites for OSCP. The results are discussed in relation to the possible role of OSCP in the interaction of F1 with the membrane sector of the mitochondrial ATPase system.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - OSCP oligomycin sensitivity conferring protein - SDS sodium dodecylsulfate This paper is dedicated to the memory of David E. Green—scholar, pioneer, visionary.  相似文献   

12.
There have been several reports on the involvement of a 29,000-dalton protein in the regulation of ATP synthesis and 32Pi-ATP exchange (Zimmer, G., Mainka, L., and Heil, B. M. (1982) FEBS Lett. 150, 207-210). The present communication demonstrates that incubation of electron transport particles with 50 microM copper-o-phenanthroline results in reversible loss of 32Pi-ATP exchange but not of oligomycin-sensitive ATPase. Dependence of the inhibition on oxygen, its prevention by EDTA, ATP, or 2-mercaptoethanol, and subsequent restoration of the activity by 2-mercaptoethanol point to a thiol-disulfide interchange as the cause of inhibition. Analysis of copper-o-phenanthroline-treated samples by polyacrylamide gel electrophoresis conducted under nonreducing conditions shows four major changes. There is a decrease in the staining intensity of two bands with molecular weights of 34,000 and 29,000 with concomitant appearance of two new bands with molecular weights of 28,000 and 58,000-60,000. The 34,000-dalton band is tentatively identified as the phosphate transport protein. The 28,000-dalton component is formed by intramolecular and the 58,000-60,000-dalton component by intermolecular cross-linking of the 29,000-dalton protein. Pretreatment of electron transport particles with 2 mM N-ethylmaleimide does not affect 32Pi-ATP exchange or its inhibition by copper-o-phenanthroline but prevents cross-linking of the 34,000- and 29,000-dalton proteins. Evidence is presented to demonstrate that the purified H+-ATPase preparation has a single 29,000-dalton protein, identical to the adenine nucleotide translocase, and that it is not essential for 32Pi-ATP exchange or oligomycin-sensitive ATPase.  相似文献   

13.
Oligomycin Sensitivity Conferral Protein (OSCP) and an F1-ATPase Binding Protein were isolated from F1-depleted rat liver mitochondrial membrane. Their molecular weights on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and urea were 22,500 and 8,500 respectively. When incubated with liver TUA (trypsin, urea and ammonia-treated) submitochondrial particles, the binding protein was effective in the binding of F1 to the particles with the resultant particle-bound ATPase activity not oligomycin sensitive. When OSCP was then incubated with the reconstituted membrane-bound ATPase, its activity became oligomycin sensitive. These results suggest that, first; the binding protein, but not OSCP, connects F1-ATPase to the membrane of rat liver mitochondria and maybe to the “stalk”, if indeed there is a stalk in mitochondrial membrane ATPase complex; and second; the function of OSCP is solely to render the ATPase activity sensitive to oligomycin and other similar inhibitors.  相似文献   

14.
1. The proton-translocating adenosine triphosphatase (ATPase) of bovine heart mitochondria was highly purified by extraction of submitochondrial particles with cholate, fractionation with ammonium sulfate, and sucrose gradient centrifugation in the presence of methanol, deoxycholate, and lysolecithin. 2. The preparation had a very low content of phospholipids, respiratory components, and adenine nucleotide transporter. The ATPase activity (14 o 16 micromoles/min/mg at 30 degrees) was dependent on addition of phospholipids. The purified enzyme was reconstituted with phospholipids, coupling factor 1 (F1), and the oligomycin sensitivity-conferring protein (OSCP) yielding vesicles with highly active 32Pi-ATP exchange (up to 260 nanomoles/min/mg at 30 degrees), and a proton pump driven by ATP. Site III oxidative phosphorylation was reconstituted when purified cytochrome oxidase was included. 3.The 32Pi-ATP exchange of the reconstituted vesicles was sensitive to both rutamycin and dichylohexylcarbodiimide but the ATPase activity was sensitive to rutamycin and not to dicyclohexylcarbodiimide. 4. In sodium dodecyl sulfate-acrylamide gel scans of the complex, the subunits of F1, OSCP, and three other major bands with apparent molecular weights of 32,000, 23,000, and about 11,000 were noted. Three other minor bands with estimated molecular weights of 80,000, 70,000, and 52,000 were also detected. These bands apparently represent residual trace amounts of respiratory components. Quantitative assays of individual respiratory components revealed between 0 and 3% contamination. 5. We conclude that the rutamycin-sensitive ATPase complex functions as a reversible ATP-driven proton pump.  相似文献   

15.
Ligand-binding studies with labelled triethyltin on yeast mitochondrial membranes showed the presence of high-affinity sites (KD = 0.6 micronM; 1.2 +/- 0.3 nmol/mg of protein) and low-affinity sites (KD less than 45 micronM; 70 +/- 20 nmol/mg of protein). The dissociation constant of the high-affinity site is in good agreement with the concentration of triethyltin required for inhibition of mitochondrial ATPase (adenosine triphosphatase) and oxidative phosphorylation. The high-affinity site is not competed for by oligomycin or venturicidin, indicating that triethyltin reacts at a different site from these inhibitors of oxidative phosphorylation. Fractionation of the mitochondrial membrane shows a specific association of the high-affinity sites with the ATP synthase complex. During purification of ATP synthase (oligomycin-sensitive ATPase) there is a 5-6-fold purification of oligomycin- and triethyltin-sensitive ATPase activity concomitant with a 7-9-fold increase in high-affinity triethyltin-binding sites. The purified yeast oligomycin-sensitive ATPase complex contains approximately six binding sites for triethyltin/mol of enzyme complex. It is concluded that specific triethyltin-binding sites are components of the ATP synthase complex, which accounts for the specific inhibition of ATPase and oxidative phosphorylation by triethyltin.  相似文献   

16.
(1) The ATPase inhibitior protein has been isolated from rat liver mitochondria in purified form. The molecular weight determined by sodium dodecyl sulfate gel electrophoresis is approximately 9500, and the isoelectric point is 8.9. (2) The protein inhibits both the soluble ATPase and the particle-bound ATPase from rat liver mitochondria. It also inhibits ATPase activities of soluble F1, and inhibitor-depleted submitochondrial particles derived from bovine heart mitochondria. (3) On particle-bound ATPase the inhibitor has its maximal effect if incubated in the presence of Mg2+. ATP at slightly acidic pH. (4) The inhibitor has a minimal effect on Pi-ATP exchange activity in sonicated submitochondrial particles. However, unexpectedly the inhibitor greatly stimules Pi-ATP exchange activity in whole mitochondria while the low ATPase activity of the mitochondria is not affected. The possible mechanism of action of the inhibitor on intact mitochondria is offered.  相似文献   

17.
Early studies have suggested the presence in the central nervous system of possible estrogen binding sites/proteins other than classical nuclear estrogen receptors (nER). We report here the isolation and identification of a 23 kDa membrane protein from digitonin-solubilized rat brain mitochondrial fractions that binds 17beta-estradiol conjugated to bovine serum albumin at C-6 position (17beta-E-6-BSA), a ligand that also specifically binds nER. This protein was partially purified using affinity columns coupled with 17beta-E-6-BSA and was recognized by the iodinated 17beta-E-6-BSA (17beta-E-6-[125I]BSA) in a ligand blotting assay. The binding of 17beta-E-6-BSA to this protein was specific for the 17beta-estradiol portion of the conjugate, not BSA. Using N-terminal sequencing and immunoblotting, this 23 kDa protein was identified as the oligomycin-sensitivity conferring protein (OSCP). This protein is a subunit of the FOF1 (F-type) mitochondrial ATP synthase/ATPase required for the coupling of a proton gradient across the F0 sector of the enzyme in the mitochondrial membrane to ATP synthesis in the F1 sector of the enzyme. Studies using recombinant bovine OSCP (rbOSCP) in ligand blotting revealed that rbOSCP bound 17beta-E-6-[125I]BSA with the same specificity as the purified 23 kDa protein. Further, in a ligand binding assay, 17beta-E-6-[125I]BSA also bound rbOSCP and it was displaced by both 17beta-E-6-BSA and 17alpha-E-6-BSA as well as partially by 17beta-estradiol and diethylstilbestrol (DES), but not by BSA. This finding opens up the possibility that estradiol, and probably other compounds with similar structures, in addition to their classical genomic mechanism, may interact with ATP synthase/ATPase by binding to OSCP, and thereby modulating cellular energy metabolism. Current experiments are addressing such an issue.  相似文献   

18.
Oligomycin has long been known as an inhibitor of mitochondrial ATP synthase, putatively binding the Fo subunits 9 and 6 that contribute to proton channel function of the complex. As its name implies, OSCP is the oligomycin sensitivity-conferring protein necessary for the intact enzyme complex to display sensitivity to oligomycin. Recent advances concerning the structure and mechanism of mitochondrial ATP synthase have led to OSCP now being considered a component of the peripheral stator stalk rather than a central stalk component. How OSCP confers oligomycin sensitivity on the enzyme is unknown, but probably reflects important protein–protein interactions made within the assembled complex and transmitted down the stator stalk, thereby influencing proton channel function. We review here our studies directed toward establishing the stoichiometry, assembly, and function of OSCP in the context of knowledge of the organization of the stator stalk and the proton channel.  相似文献   

19.
The aim of this study was the expression and production in Escherichia coli of the nucleotide-binding domains (NBDs) of the human ABCA1 transporter, in a soluble, non-denatured form. To increase the protein solubility, and avoid expression in E. coli inclusion bodies, we extended the length of the expressed NBD domains, to include proximal domains. The corresponding cDNA constructs were used to express the N-terminal His-tagged WT and mutant proteins, which were purified by Ni(2+)-affinity chromatography. Optimal expression of soluble proteins was obtained for constructs including the NBD, the downstream 80-residue domain, and about 20 upstream residues. The size homogeneity of WT and mutant NBDs was determined by Dynamic Light Scattering, and ATP-binding constants and ATPase activities were measured. The NBD1 and NBD2 domains bound ATP with comparable affinity. The ATPase activity of WT His-NBD1 was about three times higher than that of NBD2 and amounted to 5913 compared to 1979 nmol Pi/micromol NBD/min for WT His-NBD2. All engineered mutants had comparable ATPase activity to the corresponding WT protein. The optimisation of the length of the expressed proteins, based upon the boundary prediction of NBDs and neighbour domains, enables the expression and purification of soluble ABCA1 NBDs, with high ATPase activity. This approach should prove useful for the study of the structural and functional properties of the NBDs and other domains of the ABC transporters.  相似文献   

20.
Cytoplasmic ATPase of sea urchin eggs was partially purified by ammonium sulfate fractionation, DEAE-cellulose chromatography, gel-filtration chromatography and sucrose density gradient centrifugation. The specific activity increased to 0.7 μmole/min/mg protein indicating 100 fold purification. The ATPase had a sedimentation constant of 12S and was highly specific for ATP. The enzyme fraction contained neither (Na, K)-ATPase, Ca-ATPase, oligomycin-sensitive ATPase, phosphatases, nor myosin. This cytoplasmic ATPase was inhibited by a low concentration of vanadate (V). Half-maximal inhibition was observed at a vanadate concentration of 1 μM at low ionic strength. The inhibition was almost totally reversed by addition of norepinephrine. The vanadate-sensitivity of cytoplasmic ATPase decreased with increasing KCl concentration. The activation by Mg2+ or Ca2+, and dependence of the activity on KCl concentration characteristic of dyneins from sea urchin sperm flagella and the embryonic cilia were observed with cytoplasmic ATPase. These results allowed the cytoplasmic ATPase to be classified as a dynein. In addition, this designation was reinforced by the fact that an oligomeric 23S form of cytoplasmic dynein was identified in the cytoplasm as well as in the isolated mitotic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号