首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Succinate dehydrogenase is composed of two subunits, one of molecular weight 70,000, containing FAD in covalent linkage to a histidyl residue of the polypeptide chain, the other subunit of molecular weight 30,000. The fact that substrate, substrate analogs, and oxalacetate prevent inactivation of the enzyme by thiol-specific agents indicates that a thiol group must be present in close proximity to the flavin. Comparison of the incorporation of radioactivity into each subunit in the presence and absence of succinate or malonate shows that both substrate and competitive inhibitors protect a sulfhydryl group of the 70,000-molecular weight subunit. This indicates that a thiol group of the flavoprotein subunit is part of the active site. Similar investigations using oxalacetate as a protecting agent indicate that the tight binding of oxalacetate to the deactivated enzyme also occurs in the flavoprotein subunit, and may involve the same thiol group which is protected by succinate from alkylation by N-ethylmaleimide. It is clear, therefore, that not only the flavin site but also an essential thiol residue are located in the 70,000-molecular weight subunit. A second thiol group, located in the 30,000-molecular weight subunit, also binds N-ethylmaleimide covalently under similar conditions, without being part of the active site. Succinate, malonate, and oxalacetate do not influence the binding of this inhibitor to the thiol group of the lower molecular weight subunit. Using maleimide derivatives of nitroxide-type spin labels, it has been possible to demonstrate the presence of two types of thiol groups in the enzyme which form covalent derivatives with the spin probe. When the enzyme is treated with an equimolar quantity of the spin probe, a largely isotropic electron spin resonance spectrum is obtained, indicating a high probe mobility. When this site is first blocked by treating the enzyme with an equimolar quantity of N-ethylmaleimide, followed by an equimolar amount of spin label, the label is strongly immobilized with a splitting of 64 gauss. It is suggested that the sulfhydryl group which is involved in the immobilized species is at the active site.  相似文献   

2.
Soluble succinate dehydrogenase prepared by butanol extraction reacts with N-ethylmaleimide according to first-order kinetics with respect to both remaining active enzyme and the inhibitor concentration. Binding of the sulfhydryl groups of the enzyme prevents its alkylation by N-ethylmaleimide and inhibition by oxaloacetate. A kinetic analysis of the inactivation of alkylating reagent in the presence of succinate or malonate suggests that N-ethylmaleimide acts as a site-directed inhibitor. The apparent first-order rate constant of alkylation increases between pH 5.8 and 7.8 indicating a pKa value for the enzyme sulfhydryl group equal to 7.0 at 22 degrees C in 50 mM Tris-sufate buffer. Certain anions (phosphate, citrate, maleate and acetate) decrease the reactivity of the enzyme towards the alkylating reagent. Succinate/phenazine methosulfate reductase activity measured in the presence of a saturating concentration of succinate shows the same pH-dependence as the alkylation rate by N-ethylmaleimide. The mechanism of the first step of succinate oxidation, including a nucleophilic attack of substrate by the active-site sulfhydryl group, is discussed.  相似文献   

3.
Rat intestinal trehalase. Studies of the active site.   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed.  相似文献   

4.
Bovine mitochondrial malate dehydrogenase (EC 1.1.1.37) was inactivated by the specific modifications of a single histidine residue upon reaction with iodoacetamide. NADH protected against this loss of activity and reaction with the histidine residue, suggesting that the histidine is at the NADH binding site. N-Ethylmaleimide also modified the enzyme by reacting with 1 sulfhydryl residue. The reaction rate with N-ethylmaleimide was increased by decreasing the pH from neutrality or by the addition of urea. NADH protected against the modification of the sulfhydryl group under all the conditions tested, again suggesting active site specificity for this inactivation. This enzyme has a subunit weight of 33,000 and is a dimer. The native malate dehydrogenase will bind only 1 mol of NADH and it is thus assumed that there is only a single active site per dimer.  相似文献   

5.
Chalcone isomerase from soybean is inactivated by stoichiometric amounts of p-mercuribenzoate or HgCl2. Spectral titration of the enzyme with p-mercuribenzoate indicates that a single thiol group is modified. Treatment of modified enzyme with KCN or thiols results in a complete restoration of enzyme activity demonstrating that the inactivation is not due to irreversible protein denaturation. A product of the enzymatic reaction, naringenin, provides complete kinetic protection against inactivation by both mercurials. The binding constant (33 microM) for naringenin determined from the concentration dependence of the protection agrees with the inhibition constant (34 microM) for naringenin as a competitive inhibitor of the catalytic reaction. This agreement demonstrates that the observed kinetic protection results from the specific binding of naringenin to the active site. Incubation of native chalcone isomerase with sodium tetrathionate (0.1 M) results in a slow time-dependent loss of enzymatic activity. The inactivation of chalcone isomerase by tetrathionate and N-ethylmaleimide becomes very rapid in the presence of 6 M urea, indicating that the native tertiary structure is responsible for the low reactivity of the enzymatic thiol. The stoichiometric modification of reduced and denatured chalcone isomerase by [3H] N-ethylmaleimide indicates that the enzyme contains only a single cysteine residue and does not contain any disulfides. The evidence presented suggests that the only half-cystine residue in chalcone isomerase is located in the active site and thereby provides the first clue to the location of the active site in chalcone isomerase.  相似文献   

6.
R A Bednar 《Biochemistry》1990,29(15):3684-3690
The reactivity of simple alkyl thiolates with N-ethylmaleimide (NEM) follows the Br?nsted equation, log kS- = log G + beta pK, with G = 790 M-1 min-1 and beta = 0.43. The rate constant for the reaction of the thiolate of 2-mercaptoethanol with NEM is 10(7) M-1 min-1, whereas the rate constant for the reaction of the protonated thiol is less than 0.0002 M-1 min-1. The intrinsic reactivity of the protonated thiol (SH) is over (5 X 10(10]-fold less than the thiolate (S-) and makes a negligible contribution to the reactivity of thiols toward NEM. The rate of NEM modification of chalcone isomerase was conveniently measured by following the concomitant loss in enzymatic activity. The pseudo-first-order rate constants for inactivation show a linear dependence on the concentration of NEM up to 200 mM and yield no evidence for noncovalent binding of NEM to the enzyme. Evidence is presented demonstrating that the modification of chalcone isomerase by NEM is limited to a single cysteine residue over a wide range of pH. Kinetic protection against inactivation and modification by NEM is provided by competitive inhibitors and supports the assignment of this cysteine residue to be at or near the active site of chalcone isomerase. The pH dependence of inactivation of the enzyme by NEM indicates a pK of 9.2 for the cysteine residue in chalcone isomerase. At high pH, the enzymatic thiolate is only (3 X 10(-5))-fold as reactive as a low molecular weight alkyl thiolate of the same pK, suggesting a large steric inhibition of reaction on the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Fluorescamine rapidly inactivated membrane-bound succinate dehydrogenase. The inhibition of the enzyme by this reagent was prevented by succinate and malonate, suggesting that the group modified by fluorescamine was located at the active site. The modification of the active site sulfhydryl group by 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) did not alter the inhibitory action of fluorescamine. However, the protective effect of malonate against fluorescamine inhibition was abolished in the enzyme modified at the thiol.  相似文献   

8.
Kinetic analysis of inactivation of isocitrate lyase from Pseudomonas indigofera by 3-bromopyruvate established that enzyme binds this compound prior to alkylation and that substrate, Ds-isocitrate, competes for the same site on the enzyme. The rate of inactivation was increased by EDTA which is a promoter of catalysis in the presence of activated (reduced) enzyme and substrate. The combination of products, glyoxylate plus succinate, also protected against inactivation. Glyoxylate plus itaconate, phosphoenolpyruvate, or maleate also protected. However, each of the latter three compounds or glyoxylate or succinate alone provided little or no protection. Pyruvate, a competitive inhibitor with respect to glyoxylate in the condensation reaction, also failed to protect. However, two dicarboxylates, meso-tartrate and oxalate, that are also competitive inhibitors with respect to glyoxylate provide some protection against inactivation by BrP perhaps by bridging across cationic sites that facilitate glyoxylate and succinate binding. These and other results imply that alkylation by 3-bromopyruvate occurs at the succinate part of the active site. A mechanism which includes a catalytic role for the cysteine residue at the active site is presented and discussed.  相似文献   

9.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme, which is a tetramer both in the mitochondrial inner membrane and as the purified enzyme reconstituted with phospholipid. For the active enzyme-phospholipid complex in the absence of ligands, we previously found that reaction with N-ethylmaleimide (at 5 mol/mol of enzyme subunit) resulted in progressive loss of enzymic activity with an inactivation stoichiometry of 1 equiv of sulfhydryl derivatized per mole of enzyme and a maximum derivatization of 2 equiv [Latruffe, N., Brenner, S. C., & Fleischer, S. (1980) Biochemistry 19, 5285-5290]. We now find, in the presence of nucleotide or substrate, that the rate of inactivation is significantly reduced, which indicates that these ligands afford protection of the essential sulfhydryl. Further, in the presence of ligands, the inactivation stoichiometry is 0.5, consistent with half-of-the-site reactivity of the essential sulfhydryl. Thus, at a low ratio of N-ethylmaleimide to enzyme, nucleotide or substrate affords essentially complete protection of the nonessential sulfhydryl from derivatization. The binding characteristics of NADH to both the native and N-ethylmaleimide-derivatized enzyme have been compared by fluorescence spectroscopy. Quenching of intrinsic tryptophan fluorescence of the protein shows that the enzyme, derivatized with N-ethylmaleimide either in the absence or in the presence of NAD+, binds NADH but with a reduced Kd (approximately 50 microM as compared with approximately 20 microM for native enzyme). However, a critical change has occurred in that resonance energy transfer from protein to bound NADH, observed in the native enzyme, is abolished in the N-ethylmaleimide-derivatized enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Isocitrate lyase from the mycelium of Phycomyces blakesleeanus was inactivated with thiol-reactive reagents, 5,5'-dithiobis-(2-nitrobenzoic)acid, p-hydroxymercuribenzoic acid, N-ethylmaleimide or iodoacetate, at pH 6.8 and 25 degrees C. In all cases the inactivation is characterized by a biphasic kinetic profile. The rapid initial phase of inactivation does not increase linearly with increasing reagent concentration, but exhibits an apparent saturation effect, suggesting the formation of a reversible complex between the enzyme and the reagent prior to the inactivation step. Re-activation of the enzyme was observed under thiol excess treatment. The pH dependence of the initial phase of inactivation suggests that a group on the enzyme with pKa = 6.8 is being modified. The effect of ligands was tested on the inactivation reaction. Mg(2+)-Ds-isocitrate and Ds-isocitrate provided total protection, whereas Mg2+ ions, succinate and oxalate provided only partial protection of the enzyme against inactivation. On the basis of these results, we would suggest that the thiol-reactive reagents modify at least one thiol group crucial for the enzymatic activity and probably located in the interface between succinate and glyoxylate subsite.  相似文献   

11.
Inhibition of vitamin K-dependent carboxylase and oxygenase by sulfhydryl reagents was compared. Formation of vitamin K epoxide and vitamin K-dependent carboxylation are both strongly (greater than 90%) inhibited by l mM p-hydroxy-mercuribenzoate, and this inhibition is reversed by dithiothreitol. Both activities are also effectively inhibited by N-ethylmaleimide (NEM). Preincubation with vitamin K hydroquinone prevents NEM inhibition of epoxide formation but not of carboxylation. These data argue that separate active sites are required to support vitamin K-dependent epoxide formation and carboxylation and that the binding site vitamin K oxygenase contains an active thiol group.  相似文献   

12.
The pH-dependent dissociation of porcine heart mitochondrial malate dehydrogenase (L-malate:NAD+ oxidoreductase, EC 1.1.1.37) has been further characterized using the technique of sedimentation velocity ultracentrifugation. The increased rate and specificity of the inactivation of mitochondrial malate dehydrogenase by the sulfhydryl reagent N-ethylmaleimide has been correlated with the pH-dependent dissociation of the enzyme. Data obtained using NAD+ and its component parts to reassociate the enzyme and also to protect the enzyme from inactivation by N-ethylmaleimide suggest that the sulfhydryl residues being modified by N-ethylmaleimide are inaccessible when the enzyme is in its dimeric form. A dissociation curve for the pH-dependent dissociation suggests that a limited number of residues are being protonated concomitant with dissociation of the enzyme. An apparent pKa of 5.3 has been determined for this phenomenon. Studies using enzyme modified by the sulfhydryl reagent N-ethylmaleimide indicate that selective modification of essential sulfhydryl residues alters the proper binding of NADH.  相似文献   

13.
C T Grubmeyer  W R Gray 《Biochemistry》1986,25(17):4778-4784
Salmonella typhimurium L-histidinol dehydrogenase (EC 1.1.1.23), a four-electron dehydrogenase, was inactivated by an active-site-directed modification reagent, 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl). The inactivation followed pseudo-first-order kinetics and was prevented by low concentrations of the substrate L-histidinol or by the competitive inhibitors histamine and imidazole. The observed rate saturation kinetics for inactivation suggest that NBD-Cl binds to the enzyme noncovalently before covalent inactivation occurs. The UV spectrum of the inactivated enzyme showed a peak at 420 nm, indicative of sulfhydryl modification. Stoichiometry experiments indicated that full inactivation was correlated with modification of 1.5 sulfhydryl groups per subunit of enzyme. By use of a substrate protection scheme, it was shown that 0.5 sulfhydryl per enzyme subunit was neither protected against NBD-Cl modification by L-histidinol nor essential for activity. Modification of the additional 1.0 sulfhydryl caused complete loss of enzyme activity and was prevented by L-histidinol. Pepsin digestion of NBD-modified enzyme was used to prepare labeled peptides under conditions that prevented migration of the NBD group. HPLC purification of the peptides was monitored at 420 nm, which is highly selective for NBD-labeled cysteine residues. By amino acid sequencing of the major peptides, it was shown that the reagent modified primarily Cys-116 and Cys-377 and that the presence of L-histidinol gave significant protection of Cys-116. The presence of a cysteine residue in the histidinol binding site is consistent with models in which formation and subsequent oxidation of a thiohemiacetal occurs as an intermediate step in the overall reaction.  相似文献   

14.
The kinetics of Klebsiella aerogenes urease inactivation by disulfide and alkylating agents was examined and found to follow pseudo-first-order kinetics. Reactivity of the essential thiol is affected by the presence of substrate and competitive inhibitors, consistent with a cysteine located proximal to the active site. In contrast to the results observed with other reagents, the rate of activity loss in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) saturated at high reagent concentrations, indicating that DTNB must first bind to urease before inactivation can occur. The pH dependence for the rate of urease inactivation by both disulfide and alkylating agents was consistent with an interaction between the thiol and a second ionizing group. The resulting macroscopic pKa values for the 2 residues are less than 5 and 12. Spectrophotometric studies at pH 7.75 demonstrated that 2,2'-dithiodipyridine (DTDP) modified 8.5 +/- 0.2 mol of thiol/mol of enzyme or 4.2 mol of thiol/mol of catalytic unit. With the slow tight binding competitive inhibitor phenyl-phosphorodiamidate (PPD) bound to urease, 1.1 +/- 0.1 mol of thiol/mol of catalytic unit were protected from modification. PPD-bound DTDP-modified urease could be reactivated by dialysis, consistent with the presence of one thiol per active site. Analogous studies at pH 6.1, using the competitive inhibitor phosphate, confirmed the presence of one protected thiol per catalytic unit. Under denaturing conditions, 25.5 +/- 0.3 mol of thiol/mol of enzyme (Mr = 211, 800) were modified by DTDP.  相似文献   

15.
1. The NADP-linked glutamate dehydrogenase purified from epimastigotes of Trypanosoma cruzi was strongly, but not completely, inhibited by sulfhydryl reagents, in the presence of Tris-HCl or phosphate buffers. 2. The enzyme modified by preincubation with o-iodosobenzoate had a kinetic behaviour different from that shown by the enzyme modified with other inhibitors, such as N-ethylmaleimide or p-chloromercuribenzoate. 3. The inhibition by o-iodosobenzoate was additive with the inhibition by the other reagents tested. 4. It is suggested that two or more different sulfhydryl groups, placed probably near the active site, are involved in these effects.  相似文献   

16.
Aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) of Escherichia coli W contains 38 half-cystine residues per tetrameric enzyme molecule. Two sulfhydryl groups were modified with N-ethylmaleimide or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) per subunit, while 8.3 sulfhydryl groups were titrated with p-mercuribenzoic acid. In the presence of 4 M guanidine - HCl, 8.6 sulfhydryl groups reacted with DTNB per subunit. Aspartase was inactivated by various sulfhydryl reagents following pseudo-first-order kinetics. Upon modification of one sulfhydryl group per subunit with N-Ethylmaleimide, 85% of the original activity was lost; a complete inactivation was attained concomitant with the modification of two sulfhydryl groups. These results indicate that one or two sulfhydryl groups are essential for enzyme activity. L-Aspartate and DL-erythro-beta-hydroxyaspartate markedly protected the enzyme against N-ethylmaleimide-inactivation. Only the compounds having an amino group at the alpha-position exhibited protection, indicating that the amino group of the substrate contributes to the protection of sulfhydryl groups of the enzyme. Examination of enzymatic properties after N-ethylmaleimide modification revealed that 5-fold increase in the Km value for L-aspartate and a shift of the optimum pH for the activity towards acidic pH were brought about by the modification, while neither dissociation into subunits nor aggregation occurred. These results indicate that the influence of the sulfhydryl group modification is restricted to the active site or its vicinity of the enzyme.  相似文献   

17.
The relationship of the active sites which catalyze the three reactions in the trifunctional enzyme C1-tetrahydrofolate synthase (C1-THF synthase) from Saccharomyces cerevisiae has been examined with immunochemical and chemical modification techniques. Immunotitration of the enzyme with a polyclonal antiserum resulted in identical inhibition curves for the dehydrogenase and cyclohydrolase activities which were distinctly different from the inhibition curve for the synthetase activity. During chemical modification with diethyl pyrocarbonate (DEPC), the three activities were inactivated at significantly different rates, indicating that at least three distinct essential residues are involved in the reaction with DEPC. The pH dependence of the reaction with DEPC was consistent with the modification of histidyl residues. Treatment of C1-THF synthase with N-ethylmaleimide (NEM) resulted in significant inactivation of only the dehydrogenase and cyclohydrolase activities, with the cyclohydrolase at least an order of magnitude more sensitive than the dehydrogenase. Inactivation of cyclohydrolase was biphasic at NEM concentrations above 0.1 mM, suggesting two essential cysteinyl residues were being modified. NADP+, a dehydrogenase substrate, protected both dehydrogenase and cyclohydrolase activities, but not synthetase activity, against inactivation by either reagent. Synthetase substrates had no protective ability. Pteroylpolyglutamates and p-aminobenzoic acid polyglutamates exhibited some protection of all three activities. The p-aminobenzoic acid polyglutamate series showed progressive protection with increasing chain length. These results are consistent with an overlapping site for the dehydrogenase and cyclohydrolase reactions, independent from the synthetase active site. Possible active-site configurations and the role of the polyglutamate tail in substrate binding are discussed.  相似文献   

18.
Phenylglyoxal and 2,3-butanedione rapidly inactivate membrane-bound or soluble bovine heart succinate dehydrogenase. The inhibition of the enzyme by these reagents is completely prevented by saturating concentration of malonate. The modification of the active site sulfhydryl group by p-chloromercuribenzoate decreases the rate of the enzyme inhibition by phenylglyoxal and abolishes the protective effect of malonate. Kinetic data suggest that the inactivation by phenylglyoxal results from the modification of an essential arginine residue(s) which interacts with dicarboxylate to form the primary enzyme-substrate complex.  相似文献   

19.
A number of substrate analogous peptides containing a phosphoramidate, phosphonate ester, hydroxamate, carboxylate or sulfhydryl group are known to be inhibitors of thermolysin and other metalloproteinases. According to the specificity, most of the inhibitors mimic the prime site of the active center. Hitherto, peptidyl derivatives with a thiol group at the C-terminus have not been described. We have synthesized the protected cysteamides Ac-Ala-Ala-CA-SH and Z-Aa1-Aa2-CA-SH (Aa1: Ala, Pro; Aa2: Ala, Leu). The binding of these thiol peptide inhibitors to the metalloproteinases is characterized first by the coordination of the thiolate group of the inhibitor to the catalytic zinc ion and second by the subsite interaction of the peptide ligand in the active site of the enzyme. All peptide derivatives were competitive inhibitors of the zinc metalloproteinase thermolysin. The strongest inhibition was found with Z-Pro-Leu-CA-SH (Ki = 30 microM). Substitution of the N-protecting benzyloxycarbonyl residue towards the acetyl group in the peptide inhibitor, the inhibition constant decreased about 25 times.  相似文献   

20.
Cadmium ions inhibit membrane-bound succinate dehydrogenase with a second-order rate constant of 10.42 mM–1s–1 at pH 7.35 and 25°C. Succinate and malonate protect the enzyme against cadmium ion inhibition. The protection pattern exerted by succinate and malonate suggests that the group modified by cadmium is located at the active site. The pH curve of inactivation by Cd2+ indicates the involvement of an amino acid residue with pKa of 7.23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号