首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Intracellular cycling of the cation-dependent mannose 6-phosphate receptor (CD-MPR) between different compartments is directed by signals localized in its cytoplasmic tail. A di-aromatic motif (Phe18-Trp19 with Trp19 as the key residue) in its cytoplasmic tail is required for the sorting of the receptor from late endosomes back to the Golgi apparatus. However, the cation-independent mannose 6-phosphate receptor (CI-MPR) lacks such a di-aromatic motif. Therefore the ability of amino acids other than aromatic residues to replace Trp19 in the CD-MPR cytoplasmic tail was tested. Mutant constructs with bulky hydrophobic residues (valine, isoleucine, or leucine) instead of Trp19 exhibited 30-60% decreases in binding to the tail interacting protein of 47 kDa (Tip47), a protein mediating this transport step, and partially prevented receptor delivery to lysosomes. Decreasing hydrophobicity of residues at position 19 resulted in further impairment of Tip47 binding and an increase of receptor accumulation in lysosomes. Intriguingly, mutants mislocalized to lysosomes did not completely co-localize with a lysosomal membrane protein, which might suggest the presence of subdomains within lysosomes. These data indicate that sorting of the CD-MPR in late endosomes requires a distinct di-aromatic motif with only limited possibilities for variations, in contrast to the CI-MPR, which seems to require a putative loop (Pro49-Pro-Ala-Pro-Arg-Pro-Gly55) along with additional hydrophobic residues in the cytoplasmic tail. This raises the possibility of two separate binding sites on Tip47 because both receptors require binding to Tip47 for endosomal sorting.  相似文献   

2.
Here we describe the isolation and partial characterization of a new muscle-specific protein (Melusin) which interacts with the integrin cytoplasmic domain. The cDNA encoding Melusin was isolated in a two-hybrid screening of a rat neonatal heart library using beta(1)A and beta(1)D integrin cytoplasmic regions as baits. Melusin is a cysteine-rich cytoplasmic protein of 38 kDa, with a stretch of acidic amino acid residues at the extreme carboxyl-terminal end. In addition, putative binding sites for SH3 and SH2 domains are present in the amino-terminal half of the molecule. Chromosomic analysis showed that melusin gene maps at Xq12.1/13 in man and in the synthenic region X band D in mouse. Melusin is expressed in skeletal and cardiac muscles but not in smooth muscles or other tissues. Immunofluorescence analysis showed that Melusin is present in a costamere-like pattern consisting of two rows flanking alpha-actinin at Z line. Its expression is up-regulated during in vitro differentiation of the C2C12 murine myogenic cell line, and it is regulated during in vivo skeletal muscle development. A fragment corresponding to the tail region of Melusin interacted strongly and specifically with beta(1) integrin cytoplasmic domain in a two-hybrid test, but the full-length protein did not. Because the tail region of Melusin contains an acidic amino acid stretch resembling high capacity and low affinity calcium binding domains, we tested the possibility that Ca(2+) regulates Melusin-integrin association. In vitro binding experiments demonstrated that interaction of full-length Melusin with detergent-solubilized integrin heterodimers occurred only in absence of cations, suggesting that it can be regulated by intracellular signals affecting Ca(2+) concentration.  相似文献   

3.
Immunoblot analysis showed that the 47 kDa platelet substrate of protein kinase C (P47) was expressed at low levels in undifferentiated HL-60 leukaemia cells. Treatment of these cells with dimethyl sulphoxide, 1 alpha,25-dihydroxycholecalciferol or retinoic acid caused progressive increases in P47 content. Retinoic acid (1 microM) elicited the largest response, a 4-fold increase in P47 protein after 7 days that was accompanied by an increase in translatable P47 mRNA. The induction of P47 by retinoic acid preceded cessation of cell proliferation and development of the capacity to reduce Nitro Blue Tetrazolium, indicating that its expression is an early event in the myeloid differentiation of HL-60 cells.  相似文献   

4.
5.
Abstract : Alzheimer amyloid precursor protein (APP) is an integral membrane protein with a short cytoplasmic domain of 47 amino acids. It is hoped that identification of proteins that interact with the cytoplasmic domain will provide new insights into the physiological function of APP and, in turn, into the pathogenesis of Alzheimer's disease. To identify proteins that interact with the cytoplasmic domain of APP, we employed affinity chromatography using an immobilized synthetic peptide corresponding to residues 645-694 of APP695 and identified a protein of ~130 kDa in rat brain cytosol. Amino acid sequencing of the protein revealed the protein to be a rat homologue of monkey UV-DDB (UV-damaged DNA-binding protein, calculated molecular mass of 127 kDa). UV-DDB/p127 co-immunoprecipitated with APP using an anti-APP antibody from PC12 cell lysates. APP also co-immunoprecipitated with UV-DDB/p127 using an anti-UV-DDB/p127 antibody. These results indicate that UV-DDB/p127, which is present in the cytosolic fraction, forms a complex with APP through its cytoplasmic domain. In vitro binding experiments using a glutathione S -transferase-APP cytoplasmic domain fusion protein and several mutants indicated that the YENPTY motif within the APP cytoplasmic domain, which is important in the internalization of APP and amyloid β protein secretion, may be involved in the interaction between UV-DDB/p127 and APP.  相似文献   

6.
The alpha1beta1 and alpha2beta1 integrins, extracellular matrix receptors for collagens and/or laminins, have similarities in structure and ligand binding. Recent studies suggest that the two receptors mediate distinct post-ligand binding events and are not simply redundant receptors. To discern the mechanisms by which the two receptors differ, we focused on the roles of the cytoplasmic domains of the alpha subunits. We expressed either full-length alpha1 integrin subunit cDNA (X1C1), full-length alpha2 integrin subunit cDNA (X2C2), chimeric cDNA composed of the extracellular and transmembrane domains of alpha2 subunit and the cytoplasmic domain of alpha1 (X2C1), chimeric cDNA composed of the extracellular and transmembrane domains of alpha1 subunit and the cytoplasmic domain of alpha2 (X1C2), alpha1 cDNA truncated after the GFFKR sequence (X1C0) or alpha2 cDNA truncated after the GFFKR sequence (X2C0) in K562 cells. Although the cytoplasmic domains of the alpha1 and alpha2 subunits were not required for adhesion, the extent of adhesion at low substrate density was enhanced by the presence of either the alpha1 or alpha2 cytoplasmic tail. Spreading was also influenced by the presence of an alpha subunit cytoplasmic tail. Activation of the protein kinase C pathway with phorbol dibutyrate-stimulated motility that was dependent upon the presence of the alpha2 cytoplasmic tail. Both the phosphatidylinosotide-3-OH kinase and the mitogen-activated protein kinase pathways were required for phorbol-activated, alpha2-cytoplasmic tail-dependent migration.  相似文献   

7.
Immunoglobulin (Ig) superfamily members are abundant with diverse functions including cell adhesion in various tissues. Here, we identified and characterized a novel adhesion molecule that belongs to the CTX protein family and named as DICAM (Dual Ig domain containing cell adhesion molecule). DICAM is a type I transmembrane protein with two V-type Ig domains in the extracellular region and a short cytoplasmic tail of 442 amino acids. DICAM is found to be expressed ubiquitously in various organs and cell lines. Subcellular localization of DICAM was observed in the cell-cell contact region and nucleus of cultured epithelial cells. Cell-cell contact region was colocalized with tight junction protein, ZO-1. The DICAM increased MDCK cell adhesion to 60% levels of fibronectin. DICAM mediated cell adhesion was specific for the alphavbeta3 integrin; other integrins, alpha2, alpha5, beta1, alpha2beta1, alpha5beta1, were not involved in cell adhesion. In identifying the interacting domain of DICAM with alphavbeta3, the Ig domain 2 showed higher cell adhesion activity than that of Ig domain 1. Although RGD motif in Ig domain 2 was engaged in cell adhesion, it was not participated in DICAM-alphavbeta3 mediated cell adhesion. Furthermore, differentially expressing DICAM stable cells showed well correlated cell to cell adhesion capability with integrin beta3-overexpressing cells. Collectively, these results indicate that DICAM, a novel dual Ig domain containing adhesion molecule, mediates cell adhesion via alphavbeta3 integrin.  相似文献   

8.
The low density lipoprotein receptor-related protein (alpha(2)MR/LRP) is a cell surface receptor which is present on most cells and tissues. We show that the 85 kDa subunit, containing the transmembrane region and cytoplasmic domain is phosphorylated in vivo. Comparison of the phosphorylation of the low density lipoprotein receptor (LDLR) with a chimeric receptor containing the cytoplasmic domain of the alpha(2)MR/LRP (LDLR/LRP) showed that phosphorylation is exclusive to the cytoplasmic domain. Staurosporine, a general kinase inhibitor, resulted in a 40% lowering of phosphorylation of LDLR/LRP, but did not give rise to measurable changes in its membrane traffic in MDCK cells. The role of phosphorylation on degradation of the receptor was studied using inhibitors of lysosomal and proteasomal degradation. These studies showed that LDLR/LRP was rapidly turned over by proteasomal degradation but that this turnover was also not a consequence of phosphorylation.  相似文献   

9.
The rat ileal sodium-dependent bile acid transporter (Asbt) is a polytopic membrane glycoprotein, which is specifically expressed on the apical domain of the ileal brush-border membrane. In the present study, an essential 14-amino acid (aa 335-348) sorting signal was defined on the cytoplasmic tail of Asbt with two potential phosphorylation sites motifs for casein kinase II ((335)SFQE) and protein kinase C (PKC) ((339)TNK). Two-dimension NMR spectra analysis demonstrated that a tetramer, (340)NKGF, which overlaps with the potential PKC site within the 14-mer signal sequence, adopts a type I beta-turn conformation. Replacement of the potential phosphorylation residue Ser(335) and Thr(339) with alanine or deletion of either the 4 ((335)SFQE) or 10 aa (338-348, containing (339)TNKGF) from the C terminus of Asbt resulted in a significantly decreased initial bile acid transport activity and increased the basolateral distribution of the mutants by 2-3-fold compared with that of wild type Asbt. Deletion of the entire last 14 amino acids (335-348) from the C terminus of Asbt abolished the apical expression of the truncated Asbt. Moreover, replacement of the cytoplasmic tail of the liver basolateral membrane protein, Na(+)/taurocholate cotransporting polypeptide, with the 14-mer peptide tail of Asbt redirected the chimera to the apical domain. In contrast, a chimera consisting of the 14-mer peptide of Asbt fused with green fluorescent protein was expressed in an intracellular transport vesicle-like distribution in transfected Madin-Darby canine kidney and COS 7 cells. This suggests that the apical localization of the 14-mer peptide requires a membrane anchor to support proper targeting. The results from biological reagent treatment and low temperature shift (20 degrees C) suggests that Asbt follows a transport vesicle-mediated apical sorting pathway that is brefeldin A-sensitive and insensitive to protein glycosylation, monensin treatment, and low temperature shift.  相似文献   

10.
Murine alpha1,2-mannosidase IB is a type II transmembrane protein localized to the Golgi apparatus where it is involved in the biogenesis of complex and hybrid N-glycans. This enzyme consists of a cytoplasmic tail, a transmembrane domain followed by a "stem" region and a large C-terminal catalytic domain. To analyze the determinants of targeting, we constructed various deletion mutants of murine alpha1,2-mannosidase IB as well as alpha1,2-mannosidase IB/yeast alpha1,2-mannosidase and alpha1,2-mannosidase IB/GFP chimeras and localized these proteins by fluorescence microscopy, when expressed transiently in COS7 cells. Replacing the catalytic domain of alpha1,2-mannosidase IB with that of the homologous yeast alpha1,2-mannosidase and deleting the "stem" region in this chimera had no effect on Golgi targeting, but caused increased cell surface localization. The N-terminal tagged protein lacking a catalytic domain was also localized to the Golgi. In the latter case, when the stem region was partially or completely removed, the protein was found in both the ER and the Golgi. A chimera consisting of the alpha1,2-mannosidase IB N-terminal region (cytoplasmic and transmembrane domains plus 10 amino acids of the "stem" region) and GFP was localized mainly to the Golgi. Deletion of 30 out of 35 amino acids in the cytoplasmic tail had no effect on Golgi localization. A GFP chimera lacking the entire cytoplasmic tail was found in both the ER and the Golgi. These results indicate that the transmembrane domain of alpha1,2-mannosidase IB is a major determinant of Golgi localization.  相似文献   

11.
Incorporation of envelope glycoproteins into a budding retrovirus is an essential step in the formation of an infectious virus particle. By using site-directed mutagenesis, we identified specific amino acid residues in the matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein that are critical to the incorporation of HIV-1 envelope glycoproteins into virus particles. Pseudotyping analyses were used to demonstrate that two heterologous envelope glycoproteins with short cytoplasmic tails (the envelope of the amphotropic murine leukemia virus and a naturally truncated HIV-2 envelope) are efficiently incorporated into HIV-1 particles bearing the matrix mutations. Furthermore, deletion of the cytoplasmic tail of HIV-1 transmembrane envelope glycoprotein gp41 from 150 to 7 or 47 residues reversed the incorporation block imposed by the matrix mutations. These results suggest the existence of a specific functional interaction between the HIV-1 matrix and the gp41 cytoplasmic tail.  相似文献   

12.
To acquire fertilizing potential, mammalian spermatozoa must undergo capacitation and acrosome reaction. Our earlier work showed that pentoxifylline (0.45 mM), a sperm motility stimulant, induced an early onset of hamster sperm capacitation associated with tyrosine phosphorylation of 45-80 kDa proteins, localized to the mid-piece of the sperm tail. To assess the role of protein tyrosine phosphorylation in sperm capacitation, we used tyrphostin-A47 (TP-47), a specific protein tyrosine kinase inhibitor. The dose-dependent (0.1-0.5 mM) inhibition of tyrosine phosphorylation by TP-47 was associated with inhibition of hyperactivated motility and 0.5 mM TP-47-treated spermatozoa exhibited a distinct circular motility pattern. This was accompanied by hypo-tyrosine phosphorylation of 45-60 kDa proteins, localized to the principal piece of the intact-sperm and the outer dense fiber-like structures in detergent treated-sperm. Sperm kinematic analysis (by CASA) of spermatozoa, exhibiting circular motility (at 1st hr), showed lower values of straight line velocity, curvilinear velocity and average path velocity, compared to untreated controls. Other TP-47 analogues, tyrphostin-AG1478 and -AG1296, had no effect either on kinematic parameters or sperm protein tyrosine phosphorylation. These studies indicate that TP-47-induced circular motility of spermatozoa is compound-specific and that the tyrosine phosphorylation status of 45-60 kDa flagellum-localized proteins could be key regulators of sperm flagellar bending pattern, associated with the hyperactivation of hamster spermatozoa.  相似文献   

13.
alpha(4)beta(1) integrin-mediated cell adhesion results in increased cell migration, reduced cell spreading, and focal adhesion formation relative to other beta(1) integrins. Paxillin, a signaling adapter protein, binds tightly to the alpha(4) cytoplasmic domain and is implicated in alpha(4) integrin signaling. We now report the mapping of a paxillin-binding site in the alpha(4) cytoplasmic domain and an assessment of its role in the alpha(4) tail-specific integrin functions. By using truncation mutants and a peptide competition assay, we found that a region of 9 amino acid residues (Glu(983)-Tyr(991)) within the alpha(4) cytoplasmic domain contains a minimal sequence sufficient for paxillin binding. Alanine scanning of this region implicated Tyr(991) and Glu(983) as critical residues. The role of these residues was confirmed by introducing these Ala substitutions into the full-length alpha(4) tail sequence. Y991A or E983A substitution disrupted the interaction of alpha(4) integrins with paxillin. These same two point mutations reversed the effects of the alpha(4) tail on cell spreading. The key features of the identified paxillin-binding sequence are present in all alpha(4) integrins sequenced to date, including that from Xenopus laevis. The maintenance of this sequence motif suggests that paxillin binding is an evolutionarily conserved function of alpha(4) integrins.  相似文献   

14.
K Weis  U Ryder    A I Lamond 《The EMBO journal》1996,15(8):1818-1825
Nuclear proteins are targeted through the nuclear pore complex (NPC) in an energy-dependent reaction. The import reaction is mediated by nuclear localization sequences (NLS) in the substrate which are recognized by heterodimeric cytoplasmic receptors. hSRP1 alpha is an NLS-binding subunit of the human NLS receptor complex and is complexed in vivo with a second subunit of 97 kDa (p97). We show here that a short amino-terminal domain in hSRP1 alpha is necessary and sufficient for its interaction with p97. This domain is conserved in other SRP1-like proteins and its fusion to a cytoplasmic reporter protein is sufficient to promote complete nuclear import, circumventing the usual requirement for an NLS receptor interaction. The same amino-terminal domain inhibits import of NLS-containing proteins when added to an in vitro nuclear transport assay. While full-length hSRP alpha is able to leave the nucleus, the amino-terminal domain alone is not sufficient to promote exit. We conclude that hSRP1 alpha functions as an adaptor to tether NLS-containing substrates to the protein import machinery.  相似文献   

15.
The three-dimensional crystal structure of the bacteriophage phi29 connector has been solved and refined to 2.1A resolution. This 422 kDa oligomeric protein connects the head of the phage to its tail and translocates the DNA into the prohead during packaging. Each monomer has an elongated shape and is composed of a central, mainly alpha-helical domain that includes a three-helix bundle, a distal alpha/beta domain and a proximal six-stranded SH3-like domain. The protomers assemble into a 12-mer, propeller-like, super-structure with a 35 A wide central channel. The surface of the channel is mainly electronegative, but it includes two lysine rings 20 A apart. On the external surface of the particle a hydrophobic belt extends to the concave area below the SH3-like domain, which forms a crown that retains the particle in the head. The lipophilic belt contacts the non-matching symmetry vertex of the capsid and forms a bearing for the connector rotation. The structure suggests a translocation mechanism in which the longitudinal displacement of the DNA along its axis is coupled to connector spinning.  相似文献   

16.
Statin, a 57 kDa nuclear protein, is lost from quiescent fibroblasts in culture when they are induced to enter the cell cycle by feeding with growth factors, or by removal of contact inhibition. In order to investigate changes in statin expression during the transition from a quiescent to a cycling state in situ, we performed 70% partial hepatectomy on rats and analyzed the regenerating liver by immunofluorescence microscopy with antistatin monoclonal antibodies (S44 mAb), and by immunoblotting of liver proteins in cytoplasmic and enriched nuclear/cytoskeletal fractions. Western blot analysis showed that rat hepatocytes in situ contain a nuclear 57 kDa form of statin, as seen in cultured fibroblasts; however additional S44-immunoreactive polypeptides with molecular weights of 53 and 110 kDa are also present in both cytoplasmic and nuclear/cytoskeletal fractions. Immunofluo-rescence microscopy indicates that the proportion of S44-positive hepatocyte nuclei drops to ~60% within 24 hours after hepatectomy, a time period when re-entry of hepatocytes into the cell cycle is first observed. On Western blots of hepatocyte nuclear/cytoskeletal proteins obtained 24 hours after hepatectomy, the 57 kDa form of statin is markedly reduced. These results suggest that, although in liver the S44 antibody recognizes three proteins (53 kDa, 57 kDa, and 110 kDa), the 57 kDa in intact liver, similar to cultured fibroblasts, is the only polypeptide recognized by the statin antibody that disappears when hepatocytes are induced to re-enter the cell cycle from a quiescent state. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Modification of the cytoplasmic tails of the integrin alpha(IIb)beta(3) plays an important role in the signal transduction in platelets. We searched for proteins that bind to the alpha(IIb) cytoplasmic tail using the yeast two-hybrid assay with a cDNA library of the megakaryocyte-derived cell line and identified a protein, ancient ubiquitous protein 1 (Aup1), that is ubiquitously expressed in human cells. Observation of UT7/TPO cells expressing a red fluorescent protein-tagged Aup1 indicated its localization in the cytoplasm. Immunoprecipitation of UT7/TPO cells by an antibody for Aup1 revealed that approximately 40% of alpha(IIb) is complexed with Aup1. Binding study with an alpha(IIb) cytoplasmic tail peptide and glutathione S-transferase-Aup1 fusion protein revealed a low affinity (K(d) = 90 microm). Subsequent yeast two-hybrid assay indicated binding of Aup1 to cytoplasmic tails of other integrin alpha subunits. Binding study with the purified Aup1 and various glutathione S-transferase-alpha(IIb) cytoplasmic tail peptides revealed specific binding of Aup1 to the membrane-proximal sequence (KVGFFKR) that is conserved among the integrin alpha subunits and plays a crucial role in the alpha(IIb)beta(3) inside-out signaling. As Aup1 possesses domains related to signal transduction, these results suggest involvement of Aup1 in the integrin signaling.  相似文献   

18.
TIP47 (tail-interacting protein of 47 kDa) binds to the cytoplasmic domains of mannose 6-phosphate receptors and is required for their transport from endosomes to the trans- Golgi network in vitro and in living cells. TIP47 occurs in cytosol as an oligomer; it chromatographs with an apparent mass of ∼ 300 kDa and displays an S -value of ∼ 13. Recombinant TIP47 forms homo-oligomers that are likely to represent hexamers, as determined by chemical cross-linking. Removal of TIP47 residues 1–151 yields a protein that behaves as a monomer upon gel filtration, yet is fully capable of binding mannose 6-phosphate receptor cytoplasmic domains. The presence of an oligomerization domain in the N-terminus of TIP47 was confirmed by expression of N-terminal residues 1–133 or 1–257 in mammalian cells. Co-expression of full-length TIP47 with either of these fragments led to the formation of higher-order aggregates of wild-type TIP47. Furthermore, the N-terminal domains expressed alone also occurred as oligomers. These studies reveal an N-terminal oligomerization domain in TIP47, and show that oligomerization is not required for TIP47 recognition of mannose 6-phosphate receptors. However, oligomerization is required for TIP47 stimulation of mannose 6-phosphate receptor transport from endosomes to the trans- Golgi in vivo .  相似文献   

19.
The membrane topology and quaternary structure of rat cardiac gap junction ion channels containing alpha 1 connexin (i.e. Cx43) have been examined using anti-peptide antibodies directed to seven different sites in the protein sequence, cleavage by an endogenous protease in heart tissue and electron microscopic image analysis of native and protease-cleaved two-dimensional membrane crystals of isolated cardiac gap junctions. Specificity of the peptide antibodies was established using dot immunoblotting, Western immunoblotting, immunofluorescence and immunoelectron microscopy. Based on the folding predicted by hydropathy analysis, five antibodies were directed to sites in cytoplasmic domains and two antibodies were directed to the two extracellular loop domains. Isolated gap junctions could not be labeled by the two extracellular loop antibodies using thin-section immunogold electron microscopy. This is consistent with the known narrowness of the extracellular gap region that presumably precludes penetration of antibody probes. However, cryo-sectioning rendered the extracellular domains accessible for immunolabeling. A cytoplasmic "loop" domain of at least Mr = 5100 (residues (101 to 142) is readily accessible to peptide antibody labeling. The native Mr = 43,000 protein can be protease-cleaved on the cytoplasmic side of the membrane, resulting in an Mr approximately 30,000 membrane-bound fragment. Western immunoblots showed that protease cleavage occurs at the carboxy tail of the protein, and the cleavage site resides between amino acid residues 252-271. Immunoelectron microscopy demonstrated that the Mr approximately 13,000 carboxy-terminal peptide(s) is released after protease cleavage and does not remain attached to the Mr approximately 30,000 membrane-bound fragment via non-covalent interactions. Electron microscopic image analysis of two-dimensional membrane crystals of cardiac gap junctions revealed that the ion channels are formed by a hexagonal arrangement of protein subunits. This quaternary arrangement is not detectably altered by protease cleavage of the alpha 1 polypeptide. Therefore, the Mr approximately 13,000 carboxyterminal domain is not involved in forming the transmembrane ion channel. The similar hexameric architecture of cardiac and liver gap junction connexins indicates conservation in the molecular design of the gap junction channels formed by alpha or beta connexins.  相似文献   

20.
Structure of a lipid droplet protein; the PAT family member TIP47   总被引:6,自引:0,他引:6  
The perilipin/ADRP/TIP47 (PAT) proteins localize to the surface of intracellular neutral lipid droplets. Perilipin is essential for lipid storage and hormone regulated lipolysis in adipocytes, and perilipin null mice exhibit a dramatic reduction in adipocyte lipid stores. A significant fraction of the approximately 200 amino acid N-terminal region of the PAT proteins consists of 11-mer helical repeats that are also found in apolipoproteins and other lipid-associated proteins. The C-terminal 60% of TIP47, a representative PAT protein, comprises a monomeric and independently folded unit. The crystal structure of the C-terminal portion of TIP47 was determined and refined at 2.8 A resolution. The structure consists of an alpha/beta domain of novel topology and a four-helix bundle resembling the LDL receptor binding domain of apolipoprotein E. The structure suggests an analogy between PAT proteins and apolipoproteins in which helical repeats interact with lipid while the ordered C-terminal region is involved in protein:protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号