首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Double digestion of oligonucleotides obtained from ribonuclease T1 or pancreatic ribonuclease A fingerprints results in the following series of products: (Ap)0-nCp, (Ap)0-nUp, and (Ap)0-nGp. A new micromethod is described for the rapid analysis of these digests. The procedure consists of two-dimensional chromatography on a small PEI thin-layer plate. In the first dimension, the oligonucleotides are separated independent of their Ap content into three groups, which represent the Cp-, Gp-, and Up- 3′-terminal oligonucleotide series, respectively. In the second dimension, the products are fractionated according to their chain length. This method, which allows direct identification of even the longer Ap tracts in a double digest of an oligonucleotide or an RNA chain, is very rapid and highly sensitive and can be applied to the simultaneous analysis of a large number of samples in a single run. The procedure has also been adapted to the analysis of pancreatic ribonuclease A digests of small RNA fragments.  相似文献   

2.
Improvements of existing in vitro procedures for labeling RNA radioactively, and modifications of the two-dimensional polyacrylamide gel electrophoresis system for making RNA fingerprints are described. These improvements are (a) inactivation of phosphatase with nitric acid at pH 2.0 eliminated the phenol-chloroform extraction step during 5′-end labeling with polynucleotide kinase and [γ-32P]ATP; (b) ZnSO4 inactivation of RNase T1 results in a highly efficient procedure for 3′-end labeling with T4 ligase and [5′-32P]pCp; and (c) a rapid 4-min procedure for variable quantity range of 125I and RNA results in a qualitative and quantitative sample for high-molecular weight RNA fingerprinting. Thus, these in vitro procedures become rapid and reproducible when combined with two-dimensional gel electrophoresis which eliminates simultaneously labeled impurities. Each labeling procedure is compared, using tobacco mosaic virus, Brome mosaic virus, and polio RNA. A series of Ap-rich oligonucleotides was discovered in the inner genome of Brome mosaic Virus RNA-3.  相似文献   

3.
Extracts of wheat (Triticum vulgare Vill. [Triticum aestivum L.] var. Lemhi) seedlings contain thymidine-phosphorylating activity with ATP, ADP, or AMP and nucleotide hydrolase activity (ATP → → AMP). The synthesis of [32P]dTMP exclusively from [α-32P]ATP with none detectable from [γ-32P]ATP demonstrates the absence of thymidine kinase and the presence of nucleoside phosphotransferase as the only observable thymidine-phosphorylating enzyme.  相似文献   

4.
Oligonucleotides remaining in the 70s Escherichiacoli ribosomal particles after varying degrees of digestion with ribonuclease T1 were phosphorylated with polynucleotide kinase in the presence of γ-labeled32P-ATP. The resulting radioactively labeled RNA molecules were further digested with pancreatic ribonuclease and analyzed by a two-dimensional finger-printing technique. The numbers of labeled oligonucleotides were proportional to the duration of T1 digestion; most of these oligonucleotides yielded 1pAp and/or 1pCp as their 5′-end groups upon alkaline hydrolysis.  相似文献   

5.
Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with [γ-32P]ATP decreased in the presence of Glc-6-P and Glc-1,6-P2, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with [γ-32P]ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with [32P]Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either [γ-32P]ATP or [32P]Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extracts from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.  相似文献   

6.
7.
Recently developed methods which allow one to read RNA sequences directly from polyacrylamide gels do not always provide unequivocal results. A combination of primary and secondary in vitro 5′-labeling, as presented here, is methodically and in its results equivalent to fingerprinting and sequencing techniques developed for in vivo labeled RNA. 5 S RNA was used to demonstrate the applicability and reliability of this combination of postlabeling procedures: 5 μg RNA was partially digested, and the resulting overlapping fragments were 5′-32P-labeled with T4 phage-induced polynucleotide kinase in vitro. After two-dimensional polyacrylamide gel electrophoresis and carrier-free electrophoretic elution, the labeled long fragments, obtained in the 10-ng range, were completely degraded with RNase T1 and RNase A, respectively. These digests were again 32P-phosphorylated with T4 kinase and lead to fingerprints which allowed the deduction of the nucleotide sequences of the corresponding long fragments.  相似文献   

8.
A modification of the known method for obtaining radioactive fingerprints from non-radioactive nucleic acids by labelling a digest with 5'-hydroxyl polynucleotide kinase and [gamma-32P]-ATP has been applied to RNase T1 digests from various high molecular weight virus RNAs and to ovalbumin mRNA. Fractionation of the resultant [32P]-labelled T1 RNase digests by two-dimensional polyacrylamide electrophoresis demonstrates that in the case of virus RNAs, the fingerprints thus obtained are very similar to those derived from uniformly labelled RNAs. The value of this technique is that it requires only 1-5 microgram of purified virus RNA and at least three orders of magnitude less radioactivity than is routinely employed in preparing uniformly labelled RNA.  相似文献   

9.
After the incubation of reovirus replicase reaction mixtures (containing labeled ribonucleoside triphosphates), partially double-stranded ribonucleic acid (pdsRNA) products were isolated by cellulose column chromatography followed by precipitation with 2 m NaCl. The pulse-labeled reaction product contained a significantly large amount of pdsRNA that became complete dsRNA as reaction time increased, indicating that pdsRNA was an intermediate of the replicase reaction. The newly synthesized RNA strand (3H-labeled) of the pdsRNA was resistant to ribonuclease digestion, suggesting that single-stranded RNA regions were part of a preexistent unlabeled RNA template. These observations, together with the electrophoretic behavior of the pdsRNA in polyacrylamide gel, are consistent with the hypothesis that dsRNA is synthesized by the elongation of a complementary RNA strand upon a preexistent template of single-stranded RNA (i.e., messenger RNA). The direction of the RNA strand elongation was determined by carrying out the replicase reaction in the presence of 3H-cytidine triphosphate (or 3H-uridine triphosphate) and adenine triphosphate-α-32P followed by a chase with excess unlabeled cytidine triphosphate (or uridine triphosphate). The dsRNA product was digested with T1 ribonuclease and the resulting 3′-terminal fragments were isolated by chromatography on a dihydroxyboryl derivative of cellulose. Examination of the ratio of 3H to 32P in these fragments indicated that RNA synthesis proceeded from the 5′ to 3′ terminus.  相似文献   

10.
11.
1. 26-Hydroxycholesterol was obtained by reducing the methyl ester of (±)-3β-hydroxycholest-5-en-26-oic acid, which was synthesized from 25-oxonorcholesterol. 2. Methods for preparing 7α-hydroxycholesterol and 7-dehydrocholesterol were modified to allow the micro-scale preparation of these [14C]sterols from [26-14C]-cholesterol. 3. 26-Hydroxycholesterol was oxidized more readily than 7α-hydroxycholesterol, 7-dehydrocholesterol or cholesterol by mitochondrial preparations from livers of mice, rats, guinea pigs, common toads (Bufo vulgaris) and Caiman crocodylus. 4. (±)-3β-Hydroxy[26-14C]cholest-5-en-26-oic acid was oxidized very rapidly to 14CO2 by mouse and guinea-pig mitochondria without evident discrimination between the two optical isomers. 5. An enzyme system that oxidizes 26-hydroxycholesterol to 3β-hydroxycholest-5-en-26-oic acid was identified in the soluble extract of rat-liver mitochondria. This enzyme could use NADP in place of NAD but was not identical with liver alcohol dehydrogenase (EC 1.1.1.1). 6. [26-14C]Cholesteryl 3β-sulphate was not oxidized by fortified mouse-liver preparations that oxidized [26-14C]cholesterol to 14CO2.  相似文献   

12.
Particulate enzyme preparations from Phaseolus aureus hypocotyls catalyze the formation of an alkali insoluble β, 1 → 4 linked [14C]-glucan using UDP-α-d [14C]-glucose as substrate. Particulate enzymes prepared from root tissue also catalyzed the production of β, 1 → 4 glucan. UDP-β-d-[14C]-glucose would not serve as a substrate for these enzymes. The presence or absence of β, 1 → 4 glucan synthetase activity was independent of tissue source, substrate concentration, or homogenization method.  相似文献   

13.
Guanylyl- and methyltransferases, isolated from purified vaccinia virus, were used to specifically label the 5′ ends of the genome RNAs of influenza A and B viruses. All eight segments were labeled with [α-32P]guanosine 5′-triphosphate or S-adenosyl[methyl-3H]methionine to form “cap” structures of the type m7G(5′)pppNm-, of which unmethylated (p)ppN- represents the original 5′ end. Further analyses indicated that m7G(5′)pppAm, m7G(5′)pppAmpGp, and m7G(5′)pppAmpGpUp were released from total and individual labeled RNA segments by digestion with nuclease P1, RNase T1, and RNase A, respectively. Consequently, the 5′-terminal sequences of most or all individual genome RNAs of influenza A and B viruses were deduced to be (p)ppApGpUp. The presence of identical sequences at the ends of RNA segments of both types of influenza viruses indicates that they have been specifically conserved during evolution.  相似文献   

14.
[γ-32P]GTP-Labeled Qβ 6S RNA yielded only one major radioactive oligonucleotide after digestion with pancreatic ribonuclease. Nearest neighbor analysis of this 5′-oligonucleotide demonstrated that approximately 95% of the molecules terminate with the same sequence, pppGpGpCp. This sequence is the complement of the only major 3′-sequence found in this RNA. Both strands of 6S RNA therefore appear to have identical 3′- and 5′-terminal trinucleotide sequences.  相似文献   

15.
Phanerochaete chrysosporium metabolized the radiolabeled lignin model compounds [γ-14C]guaiacylglycerol-β-guaiacyl ether and [4-methoxy-14C]veratrylglycerol-β-guaiacyl ether (VI) to 14CO2 in stationary and in shaking cultures. 14CO2 evolution was greater in stationary culture. 14CO2 evolution from [γ-14C]guaiacyl-glycerol-β-guaiacyl ether and [4-methoxy-14C]veratrylglycerol-β-guaiacyl ether in stationary cultures was two- to threefold greater when 100% O2 rather than air (21% O2) was the gas phase above the cultures. 14CO2 evolution from the metabolism of the substrates occurred only as the culture entered the stationary phase of growth. The presence of substrate levels of nitrogen in the medium suppressed 14CO2 evolution from both substrates in stationary cultures. [14C]veratryl alcohol and 4-ethoxy-3-methoxybenzyl alcohol were formed as products of the metabolism of VI and 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether, respectively.  相似文献   

16.
After conversion of unlabeled DNA and RNA to 3′-mononucleotides accurate base compositional analysis can be performed on as little as 10 ng of the hydrolysate. The 3′-mononucleotides are first quantitatively postlabeled with [γ-32P]ATP by T4 polynucleotide kinase and are then separated as mononucleoside diphosphates on Whatman DE-81 ion-exchange paper at pH 3.5 after hydrolysis of surplus [γ-32P]ATP to 32P1. The locations of the four labeled nucleoside diphosphates are determined by autoradiography and the ratio of radioactivity in the four spots gives the base ratio of the sample.  相似文献   

17.
The incorporation of 14C by etiolated maize and barley shoots exposed to light of 14CO2 and [2-14C]mevalonic acid into phylloquinone, plastoquinone, ubiquinone, α-tocopherolquinone and α-tocopherol was examined. In maize (the principal tissue studied) it was demonstrated that 14C from [2-14C]mevalonic acid is incorporated into phylloquinone, plastoquinone and ubiquinone. α-Tocopherol and α-tocopherolquinone, although undoubtedly labelled from this substrate, were not purified completely. As expected, 14C from 14CO2 was incorporated into all components examined. Ozonolytic degradation studies showed that 14C from [2-14C]mevalonic acid was incorporated specifically into the prenyl side chains of plastoquinone and ubiquinone, and from this it was inferred that mevalonic acid can be regarded as the specific distal precursor to the prenyl portions of all terpenoid quinones occurring in plant tissues. From a comparison of the relative incorporation of 14C from 14CO2 and [2-14C]mevalonic acid into the intra- and extra-chloroplastidic terpenoids evidence was obtained consistent with the tenet that the prenyl portions of the chloroplastidic quinones phylloquinone and plastoquinone, along with β-carotene, are biosynthesized within the confines of the chloroplast, the side chain of the extraplastidic ubiquinone and phytosterols being synthesized elsewhere within the cell. The results obtained for the incorporation of 14C from 14CO2 and [2-14C]mevalonic acid into α-tocopherol and α-tocopherolquinone were not readily interpretable with regard to the site of synthesis of these compounds.  相似文献   

18.
Hexokinase (EC 2.7.1.1) will convert commercially available α-[32P]-labelled ATP into α-[32P]-labelled ADP. A simple, rapid isolation procedure for the α-[32P]-labelled ADP is described and this synthetic method can be used for the preparation of other α-[32P]-labelled nucleoside diphosphates.  相似文献   

19.
20.
HeLa cell “5.8 S” ribosomal RNA was digested with T1 ribonuclease and the digestion products were characterized. In particular several hexa-, or larger, oligonucleotides were well fractionated by T1 ribonuclease plus alkaline phosphatase fingerprints. The sequences of these large products were determined. The same large products were identified in fingerprints of “native” 28 S RNA, that is, 28 S RNA to which 5.8 S RNA is attached. The products were demonstrably absent in fingerprints of heat-denatured 28 S RNA, which lacks the 5.8 S fragment. The oligonucleotides were present in fingerprints of 32 S RNA, whether previously heated or not. One of the largest 5.8 S oligonucleotides contains an alkali-stable (2′-O-methylated) dinucleotide, Gm-C. This product was identified in fingerprints of methyl-labelled 45 S RNA. These findings prove that the 5.8 S ribosomal sequence is present within HeLa cell ribosomal precursor RNA. In addition to the methylated nucleotide, two pseudouridylate residues were discovered in HeLa cell 5.8 S RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号