首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphatase 2A (PP2A) accounts for the majority of total Ser/Thr phosphatase activities in most cell types and regulates many biological processes. PP2A holoenzymes contain a scaffold A subunit, a catalytic C subunit, and one of the regulatory/targeting B subunits. How the B subunit controls PP2A localization and substrate specificity, which is a crucial aspect of PP2A regulation, remains poorly understood. The kinetochore is a critical site for PP2A functioning, where PP2A orchestrates chromosome segregation through its interactions with BubR1. The PP2A-BubR1 interaction plays important roles in both spindle checkpoint silencing and stable microtubule-kinetochore attachment. Here we present the crystal structure of a PP2A B56-BubR1 complex, which demonstrates that a conserved BubR1 LxxIxE motif binds to the concave side of the B56 pseudo-HEAT repeats. The BubR1 motif binds to a groove formed between B56 HEAT repeats 3 and 4, which is quite distant from the B56 binding surface for PP2A catalytic C subunit and thus is unlikely to affect PP2A activity. In addition, the BubR1 binding site on B56 is far from the B56 binding site of shugoshin, another kinetochore PP2A-binding protein, and thus BubR1 and shugoshin can potentially interact with PP2A-B56 simultaneously. Our structural and biochemical analysis indicates that other proteins with the LxxIxE motif may also bind to the same PP2A B56 surface. Thus, our structure of the PP2A B56-BubR1 complex provides important insights into how the B56 subunit directs the recruitment of PP2A to specific targets.  相似文献   

2.
Myosin phosphatase targeting subunit 3 (MYPT3) and transforming growth factor-beta-inhibited membrane-associated protein (TIMAP) are two closely related myosin-binding targeting subunits of protein phosphatase 1 (PP1c) with a characteristic CAAX (where AA indicates aliphatic amino acid) box at the C termini. Here we show that MYPT3 can be a substrate for protein kinase A (PKA). We first mapped the multiple phosphorylation sites within a central conserved motif. Deletion or mutations of this motif resulted in enhancement of the associated PP1c activity, suggesting that phosphorylation of MYPT3 may play an important role in regulating PP1c catalytic activity. However, unlike the other known MYPTs, which upon phosphorylation inhibit PP1c, PKA phosphorylation of MYPT3 resulted in PP1c activation, indicating a different mode of action. There is a direct interaction between the central conserved phosphorylated site motif with the N-terminal ankyrin repeat region; this interaction was significantly reduced with MYPT3 phosphorylation or acidic phosphorylation site mutations, with concomitant alterations in biochemical and morphological consequences. We therefore propose a novel mechanism for the phosphorylation of MYPT3 by PKA and activation of the catalytic activity through direct interaction of a central region of MYPT3 with its N-terminal region.  相似文献   

3.
Protein phosphatase I (PP1) is an essential eukaryotic serine/threonine phosphatase required for many cellular processes, including cell division, signaling, and metabolism. In mammalian cells there are three major isoforms of the PP1 catalytic subunit (PP1alpha, PP1beta, and PP1gamma) that are over 90% identical. Despite this high degree of identity, the PP1 catalytic subunits show distinct localization patterns in interphase cells; PP1alpha is primarily nuclear and largely excluded from nucleoli, whereas PP1gamma and to a lesser extent PP1beta concentrate in the nucleoli. The subcellular localization and the substrate specificity of PP1 catalytic subunits are determined by their interaction with targeting subunits, most of which bind PP1 through a so-called "RVXF" sequence. Although PP1 targeting subunits have been identified that direct PP1 to a number of subcellular locations and/or substrates, no targeting subunit has been identified that localizes PP1 to the nucleolus. Identification of nucleolar PP1 targeting subunit(s) is important because all three PP1 isoforms are included in the nucleolar proteome, enzymatically active PP1 is present in nucleoli, and PP1gamma is highly concentrated in nucleoli of interphase cells. In this study, we identify NOM1 (nucleolar protein with MIF4G domain 1) as a PP1-interacting protein and further identify the NOM1 RVXF motif required for its binding to PP1. We also define the NOM1 nucleolar localization sequence. Finally, we demonstrate that NOM1 can target PP1 to the nucleolus and show that a specific NOM1 RVXF motif and the NOM1 nucleolar localization sequence are required for this targeting activity. We therefore conclude that NOM1 is a PP1 nucleolar targeting subunit, the first identified in eukaryotic cells.  相似文献   

4.
Regulation of integrin activation occurs by specific interactions among cytoplasmic proteins and integrin alpha and beta cytoplasmic tails. We report that the catalytic subunit of protein phosphatase 1 (PP1c) constitutively associates with the prototypic integrin alphaIIbbeta3 in platelets and in cell lines overexpressing the integrin. PP1c binds directly to the cytoplasmic domain of integrin alphaIIb subunit containing a conserved PP1c binding motif 989KVGF992. Anchored PP1c is inactive, while thrombin-induced platelet aggregation or fibrinogen-alphaIIbbeta3 engagement caused PP1c dissociation and concomitant activation as revealed by dephosphorylation of PP1c substrate, myosin light chain. Inhibition of ligand binding to activated alphaIIbbeta3 blocks PP1c dissociation and represses PP1c activation. These studies reveal a previously unrecognized role for integrins whereby the alpha subunit cytoplasmic tail localizes the machinery for initiating and temporally maintaining the regulatory signaling activity of a phosphatase.  相似文献   

5.
Le AV  Tavalin SJ  Dodge-Kafka KL 《Biochemistry》2011,50(23):5279-5291
The ubiquitously expressed and highly promiscuous protein phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit copurified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC(50) of 811 ± 0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and surface plasmon resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggesting additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150-250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity toward specific targets in the AKAP79 complex.  相似文献   

6.
Previous work from our laboratory and others has established that Ste-20-related proline-alanine-rich kinase (SPAK/PASK) is central to the regulation of NKCC1 function. With no lysine (K) kinase (WNK4) has also been implicated in the regulation of NKCC1 activity through upstream activation of SPAK. Because previous studies from our laboratory also demonstrated a protein-protein interaction between SPAK and apoptosis-associated tyrosine kinase (AATYK), we explore here the possibility that AATYK is another component of the regulation of NKCC1. Heterologous expression of AATYK1 in NKCC1-injected Xenopus laevis oocytes markedly inhibited cotransporter activity under isosmotic conditions. Interestingly, mutation of key residues in the catalytic domain of AATYK1 revealed that the kinase activity does not play a role in the suppression of NKCC1 function. However, mutagenesis of the two SPAK-binding motifs in AATYK1 completely abrogated this effect. As protein phosphatase 1 (PP1) also plays a central role in the dephosphorylation and inactivation of NKCC1, we investigated the possibility that AATYK1 interacts with the phosphatase. We identified a PP1 docking motif in AATYK1 and demonstrated interaction using yeast-2-hybrid analysis. Mutation of a key valine residue (V1175) within this motif prevented protein-protein interaction. Furthermore, the physical interaction between PP1 and AATYK was required for inhibition of NKCC1 activity in Xenopus laevis oocytes. Taken together, our data are consistent with AATYK1 indirectly inhibiting the SPAK/WNK4 activation of the cotransporter by scaffolding an inhibitory phosphatase in proximity to a stimulatory kinase. ion fluxes; Xenopus laevis oocytes; yeast-2 hybrid; phosphorylation  相似文献   

7.
The diverse forms of protein phosphatase 1 in vivo result from the association of its catalytic subunit (PP1c) with different regulatory subunits, one of which is the G-subunit (G(M)) that targets PP1c to glycogen particles in muscle. Here we report the structure, at 3.0 A resolution, of PP1c in complex with a 13 residue peptide (G(M[63-75])) of G(M). The residues in G(M[63-75]) that interact with PP1c are those in the Arg/Lys-Val/Ile-Xaa-Phe motif that is present in almost every other identified mammalian PP1-binding subunit. Disrupting this motif in the G(M[63-75]) peptide and the M(110[1-38]) peptide (which mimics the myofibrillar targeting M110 subunit in stimulating the dephosphorylation of myosin) prevents these peptides from interacting with PP1. A short peptide from the PP1-binding protein p53BP2 that contains the RVXF motif also interacts with PP1c. These findings identify a recognition site on PP1c, invariant from yeast to humans, for a critical structural motif on regulatory subunits. This explains why the binding of PP1 to its regulatory subunits is mutually exclusive, and suggests a novel approach for identifying the functions of PP1-binding proteins whose roles are unknown.  相似文献   

8.
The cyclic AMP (cAMP)-dependent protein kinase (PKA) and the type 1 protein phosphatase (PP1) are broad-specificity signaling enzymes with opposing actions that catalyze changes in the phosphorylation state of cellular proteins. Subcellular targeting to the vicinity of preferred substrates is a means of restricting the specificity of each enzyme [1] [2]. Compartmentalization of the PKA holoenzyme is mediated through association of the regulatory subunits with A-kinase anchoring proteins (AKAPs), whereas a diverse family of phosphatase-targeting subunits directs the location of the PP1 catalytic subunit (PP1c) [3] [4]. Here, we demonstrate that the PKA-anchoring protein, AKAP220, binds PP1c with a dissociation constant (KD) of 12.1 +/- 4 nM in vitro. Immunoprecipitation of PP1 from cell extracts resulted in a 10.4 +/- 3.8-fold enrichment of PKA activity. AKAP220 co-purified with PP1c by affinity chromatography on microcystin sepharos Immunocytochemical analysis demonstrated that the kinase, the phosphatase and the anchoring protein had distinct but overlapping staining patterns in rat hippocampal neurons. Collectively, these results provide the first evidence that AKAP220 is a multivalent anchoring protein that maintains a signaling scaffold of PP1 and the PKA holoenzyme.  相似文献   

9.
The mammalian MYPT family consists of the products of five genes, denoted MYPT1, MYPT2, MBS85, MYPT3 and TIMAP, which function as targeting and regulatory subunits to confer substrate specificity and subcellular localization on the catalytic subunit of type 1δ protein serine/threonine phosphatase (PP1cδ). Family members share several conserved domains, including an RVxF motif for PP1c binding and several ankyrin repeats that mediate protein–protein interactions. MYPT1, MYPT2 and MBS85 contain C-terminal leucine zipper domains involved in dimerization and protein–protein interaction, whereas MYPT3 and TIMAP are targeted to membranes via a C-terminal prenylation site. All family members are regulated by phosphorylation at multiple sites by various protein kinases; for example, Rho-associated kinase phosphorylates MYPT1, MYPT2 and MBS85, resulting in inhibition of phosphatase activity and Ca2+ sensitization of smooth muscle contraction. A great deal is known about MYPT1, the myosin targeting subunit of myosin light chain phosphatase, in terms of its role in the regulation of smooth muscle contraction and, to a lesser extent, non-muscle motile processes. MYPT2 appears to be the key myosin targeting subunit of myosin light chain phosphatase in cardiac and skeletal muscles. MBS85 most closely resembles MYPT2, but little is known about its physiological function. Little is also known about the physiological role of MYPT3, although it is likely to target myosin light chain phosphatase to membranes and thereby achieve specificity for substrates involved in regulation of the actin cytoskeleton. MYPT3 is regulated by phosphorylation by cAMP-dependent protein kinase. TIMAP appears to target PP1cδ to the plasma membrane of endothelial cells where it serves to dephosphorylate proteins involved in regulation of the actin cytoskeleton and thereby control endothelial barrier function. With such a wide range of regulatory targets, MYPT family members have been implicated in diverse pathological events, including hypertension, Parkinson’s disease and cancer.  相似文献   

10.
Protein phosphatase type 1 catalytic subunit (PP1c) is a serine/threonine phosphatase involved in the dephosphorylation of many proteins in eukaryotic cells. It associates with several known targeting or regulatory subunits that directly regulate PP1c activity toward specific substrates. The recently identified Phosphatase Nuclear Targeting Subunit (PNUTS) binds to PP1c and inhibits PP1 activity toward phosphorylase a. One of the substrates of PP1c has been shown to be the cell cycle regulatory protein, Retinoblastoma (pRb). In this study, we show that PNUTS dissociates from PP1c under mildly hypoxic cell growth conditions that lead to an increase of PP1c activity toward pRb. We developed an assay that measures pRb-directed PP1c activity and show that a GST-PNUTS fusion protein inhibits phosphatase activity toward pRb when using PP1c from cell lysates, GST-PP1c, or purified PP1c. These studies suggest that PNUTS is involved in the regulation of PP1c activity toward pRb.  相似文献   

11.
The phosphorylation status of cellular proteins is controlled by the opposing actions of protein kinases and phosphatases. Compartmentalization of these enzymes is critical for spatial and temporal control of these phosphorylation/dephosphorylation events. We previously reported that a 220-kDa A-kinase anchoring protein (AKAP220) coordinates the location of the cAMP-dependent protein kinase (PKA) and the type 1 protein phosphatase catalytic subunit (PP1c) (Schillace, R. V., and Scott, J. D. (1999) Curr. Biol. 9, 321-324). We now demonstrate that an AKAP220 fragment is a competitive inhibitor of PP1c activity (K(i) = 2.9 +/- 0.7 micrometer). Mapping studies and activity measurements indicate that several protein-protein interactions act synergistically to inhibit PP1. A consensus targeting motif, between residues 1195 and 1198 (Lys-Val-Gln-Phe), binds but does not affect enzyme activity, whereas determinants between residues 1711 and 1901 inhibit the phosphatase. Analysis of truncated PP1c and chimeric PP1/2A catalytic subunits suggests that AKAP220 inhibits the phosphatase in a manner distinct from all known PP1 inhibitors and toxins. Intermolecular interactions within the AKAP220 signaling complex further contribute to PP1 inhibition as addition of the PKA regulatory subunit (RII) enhances phosphatase inhibition. These experiments indicate that regulation of PP1 activity by AKAP220 involves a complex network of intra- and intermolecular interactions.  相似文献   

12.
The renal Na-K-Cl cotransporter (NKCC2) is selectively expressed in the apical membranes of cells of the mammalian kidney, where it is the target of the clinically important loop diuretics. In contrast, the “secretory” NKCC1 cotransporter is localized in the basolateral membranes of many epithelia. To identify the sorting signal(s) that direct trafficking of NKCCs, we generated chimeras between the two isoforms and expressed these constructs in polarized renal epithelial cell lines. This analysis revealed an amino acid stretch in NKCC2 containing apical sorting information. The NKCC1 C terminus contains a dileucine motif that constitutes the smallest essential component of its basolateral sorting signal. NKCC1 lacking this motif behaves as an apical protein. Examination of the NKCC gene structure reveals that this dileucine motif is encoded by an additional exon in NKCC1 absent in NKCC2. Phylogenetic analysis of this exon suggests that the evolutionary loss of this exon from the gene encoding the basolateral NKCC1 constitutes a novel mechanism that accounts for the apical sorting of the protein encoded by the NKCC2 gene.  相似文献   

13.
Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine protein phosphatase, and mediates diverse cellular processes in animal systems via the association of a catalytic subunit (PP1c) with multiple regulatory subunits that determine the catalytic activity, the subcellular localization, and the substrate specificity. However, no regulatory subunit of PP1 has been identified in plants so far. In this study, we identified inhibitor-3 (Inh3) as a regulatory subunit of PP1 and characterized a functional role of Inh3 in Vicia faba and Arabidopsis (Arabidopsis thaliana). We found Inh3 as one of the proteins interacting with PP1c using a yeast two-hybrid system. Biochemical analyses demonstrated that Arabidopsis Inh3 (AtInh3) bound to PP1c via the RVxF motif of AtInh3, a consensus PP1c-binding sequence both in vitro and in vivo. AtInh3 inhibited the PP1c phosphatase activity in the nanomolar range in vitro. AtInh3 was localized in both the nucleus and cytoplasm, and it colocalized with Arabidopsis PP1c in these compartments. Disruption mutants of AtINH3 delayed the progression of early embryogenesis, arrested embryo development at the globular stage, and eventually caused embryo lethality. Furthermore, reduction of AtINH3 expression by RNA interference led to a decrease in fertility. Transformation of the lethal mutant of inh3 with wild-type AtINH3 restored the phenotype, whereas that with the AtINH3 gene having a mutation in the RVxF motif did not. These results define Inh3 as a regulatory subunit of PP1 in plants and suggest that Inh3 plays a crucial role in early embryogenesis in Arabidopsis.  相似文献   

14.
X Wu  K Tatchell 《Biochemistry》2001,40(25):7410-7420
Protein phosphatase type 1 (PP1) is a major Ser/Thr protein phosphatase that is involved in many cellular processes. The activity of PP1 is controlled by regulatory subunits, many of which are thought to bind to a hydrophobic groove in PP1 via a short consensus sequence termed the V/IXF motif. To test this hypothesis, 11 variants of yeast PP1 (Glc7) were constructed in which one or more of the residues comprising the groove were changed to alanine. These variants were tested for their biological activity in vivo, for their biochemical activity in vitro, and for their ability to associate with three PP1 binding proteins. Five variants are unable to complement the essential function of PP1 in vivo although they are catalytically active in vitro. Many of the mutants are deficient in binding two V/IXF-containing subunits, Gac1 and Reg1, which regulate glycogen accumulation and glucose repression, respectively, but all retain the ability to associate with Sds22, a regulatory subunit that lacks this motif. The subcellular locations at which PP1 normally accumulates (bud neck, nucleolus, spindle pole body) were not occupied by one PP1 variant. Additionally, we provide evidence that mutations in the hydrophobic groove of PP1 affect substrate specificity. Together, these results demonstrate the importance of the hydrophobic groove for the interaction with regulatory subunits, for the proper subcellular localization of PP1 and for the substrate specificity of PP1.  相似文献   

15.
Regulation of the major Ser/Thr phosphatase protein phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry, and small-angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and inhibitor 2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1-spinophilin-I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1-spinophilin and PP1-I-2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1-I-2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multifunctional PP1 holoenzymes.  相似文献   

16.
In Saccharomyces cerevisiae, Snf1 kinase, the ortholog of the mammalian AMP-activated protein kinase, is activated by an increase in the phosphorylation of the conserved threonine residue in its activation loop. The phosphorylation status of this key site is determined by changes in the rate of dephosphorylation catalyzed by the yeast PP1 phosphatase Glc7 in a complex with the Reg1 protein. Reg1 and many PP1 phosphatase regulatory subunits utilize some variation of the conserved RVxF motif for interaction with PP1. In the Snf1 pathway, the exact role of the Reg1 protein is uncertain since it binds to both the Glc7 phosphatase and to Snf1, the Glc7 substrate. In this study we sought to clarify the role of Reg1 by separating the Snf1- and Glc7-binding functions. We generated a series of Reg1 proteins, some with deletions of conserved domains and one with two amino acid changes in the RVxF motif. The ability of Reg1 to bind Snf1 and Glc7 required the same domains of Reg1. Further, the RVxF motif that is essential for Reg1 binding to Glc7 is also required for binding to Snf1. Our data suggest that the regulation of Snf1 dephosphorylation is imparted through a dynamic competition between the Glc7 phosphatase and the Snf1 kinase for binding to the PP1 regulatory subunit Reg1.  相似文献   

17.
Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases.  相似文献   

18.
Protein phosphatase 2A (PP2A) is a large family of holoenzymes that comprises 1% of total cellular proteins and accounts for the majority of Ser/Thr phosphatase activity in eukaryotic cells. PP2A proteins are made of a core dimer, composed of a catalytic (C) subunit and a structural (A) subunit, in association with a third variable -regulatory (B) subunit. Although initially considered as a constitutive housekeeping enzyme, PP2A is indeed highly regulated by post-translational modifications of its catalytic subunit or by the identity of a regulatory type B subunit, which determines substrate specificity, subcellular localization and enzymatic activity of a defined holoenzyme. During the two last decades, multiple studies of structural and functional regulation of PP2A holoenzymes by viral proteins led to the identification of critical pathways for both viral biology and tumorigenesis. To date a dozen of different viruses (ADN/ARN or retrovirus) have been identified that encode viral proteins associated to PP2A. In this review, we analyze a biological strategy, used by various viruses based on the targeting of PP2A enzymes by viral proteins, in order to specifically deregulate cellular pathways of their hosts. The impact of such PP2A targeting for biomedical search, and in further therapeutic developments against cancer, will also be discussed.  相似文献   

19.
Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.  相似文献   

20.
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders.This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号