首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45°C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three reactors sampled, and the Ferroplasma isolate became increasingly dominant as mineral oxidation progressed, eventually accounting for >99% of plate isolates in the third of three in-line reactors. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits (e.g., oxidation of iron and/or sulfur and autotrophy or heterotrophy) were examined. More detailed studies were carried out with the Leptospirillum and Ferroplasma isolates. The data presented here represent the first quantitative study of the microorganisms in a metal leaching situation and confirm that mixed cultures of iron- and sulfur-oxidizing prokaryotic acidophiles catalyze the accelerated dissolution of sulfidic minerals in industrial tank bioleaching operations. The results show that indigenous acidophilic microbial populations change as mineral dissolution becomes more extensive.  相似文献   

2.
Summary Continuous leaching of a pyritic flotation concentrate by mixed cultures of acidophilic bacteria was studied in a laboratory scale airlift reactor. Enrichment cultures adapted to the flotation concentrate contained Thiobacillus ferrooxidans and Thiobacillus thiooxidans. During the late stationary growth phase of these thiobacilli growth of Leptospirillum-like bacteria was observed, too. In discontinuous cultivation no significant influence of Leptospirillum-like bacteria on leaching rates could be detected. During continuous leaching at pH 1.5 Leptospirillum-like bacteria displaced Thiobacillus ferrooxidans. The iron leaching rate achieved by Leptospirillum-rich cultures was found to be up to 3.9 times higher than that by Leptospirillum-free cultures.  相似文献   

3.
Construction and analysis of the 16S rDNA clone libraries was used to investigate the species composition of two thermotolerant communities of acidophilic chemolithotrophic microorganisms (ACM) isolated from the pulp of laboratory reactors used for oxidation of different gold-containing ore concentrates. The first community was formed during oxidation of the pyrite-arsenopyrite ore concentrate from the Kyuchus deposit. The clones of the bacterial component of this community belonged to the genera Sulfobacillus (32 clones) and Leptospirillum (33 clones). The Sulfobacillus clones belonged to three groups: Sb. thermosulfidooxidans, Sb. benefaciens, and Sb. thermotolerans. All Leptospirillum clones were closely related to L. ferriphilum. All clones of the archaeal component belonged to Ferroplasma acidiphilum. The microorganisms of this community were used as inoculum for biooxidation of a different mineral concentrate, the pyrrhotite-containing pyrite-arsenopyrite ore concentrate from the Olympiadinskoe deposit, and the structure of the community formed in the process was investigated. The clones of the bacterial component of the second community also belonged to the genera Sulfobacillus (14 clones) and Leptospirillum (48 clones). The Sulfobacillus clones belonged to the species Sb. thermosulfidooxidans (13 clones) and Sb. thermotolerans (1 clone). All Leptospirillum clones were closely related to L. ferriphilum. All clones of the archaeal component belonged to Ferroplasma acidiphilum. During the adaptation of the community to a new oxidized mineral substrate, both the composition and the ratio of the constituent microbial species changed.  相似文献   

4.
舒为  田晓玉  赵洪伟 《微生物学报》2020,60(9):1999-2011
【目的】海南海口含有丰富的温泉资源,对温泉微生物多样性进行研究,有助于进一步开发和利用海南温泉微生物资源。【方法】本文采用Illumina Hi Seq高通量测序技术对海口3个温泉[海甸岛荣域温泉(S1)、火山口开心农场温泉(S2)和西海岸海长流温泉(S3)]水样中微生物ITS序列和16Sr RNA基因V3-V4区进行测序及生物信息学分析,探究海口市3个不同区域的温泉真菌多样性与细菌多样性。【结果】(1)α多样性分析表明,真菌群落中,S3(29)S1(29)S2,而在细菌群落中,S2(29)S1(29)S3。β多样性分析表明,3个温泉真菌群落和细菌群落组成差异皆显著。(2)分类分析表明,温泉真菌群落优势菌门为子囊菌门(Ascomycota)和担子菌门(Basidiomycota),细菌群落优势菌门为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、Thermi、硝化螺旋菌门(Nitrospirae)、绿菌门(Chlorobi)、厚壁菌门(Firmicutes)、绿弯菌门(Chloroflexi)、放线菌门(Actinobacteria)。(3) CCA (Canonical correspondence analysis)分析表明,3个温泉的真菌群落主要影响因子是温度,细菌群落主要影响因子是总磷。【结论】海南省海口市温泉中含有丰富的微生物资源,其微生物群落组成受多种环境因子影响,且影响真菌和细菌的主要环境因子不同。  相似文献   

5.
An aboriginal community of thermophilic acidophilic chemolithotrophic microorganisms (ACM) was isolated from a sample of pyrite gold-bearing flotation concentrate at 45–47°C and pH 1.8–2.0. Compared to an experimental thermoacidophilic microbial consortium formed in the course of cultivation in parallel bioreactors, it had lower rates of iron leaching and oxidation, while its rate of sulfur oxidation was higher. A new thermophilic acidophilic microbial community was obtained by mutual enrichment with the microorganisms from the experimental and aboriginal communities during the oxidation of sulfide ore flotation concentrate at 47°C. The dominant bacteria of this new ACM community were Acidithiobacillus caldus (the most active sulfur oxidize) and Sulfobacillus thermotolerans (active oxidizer of both iron and sulfur), while iron-oxidizing archaea of the family Ferroplasmaceae and heterotrophic bacteria Alicyclobacillus tolerans were the minor components. The new ACM community showed promise for leaching/oxidation of sulfides from flotation concentrate at high pulp density (S : L = 1 : 4).  相似文献   

6.
Antimony leaching from sulfide ore samples by an experimental consortium of thermoacidophilic microorganisms, including Sulfobacillus, Leptospirillum, and Ferroplasma strains was studied. The ores differed significantly in the content of the major metal sulfides (%): SbS, 0.84 to 29.95; FeS, 0.47 to 2.5, and AsS, 0.01 to 0.4. Independent of the SbS concentration in the experimental sample, after adaptation to a specific ore and pulp compaction, the microorganisms grew actively and leached/oxidized all gold-antimony ores at 39 ± 1°C. The lower was the content of iron and arsenic sulfides, the higher was antimony leaching. For the first time the investigations conducted with the use of X-ray microanalysis made it possible to conclude that, in a natural high-antimony ore, Sb inhibits growth of only a part of the cell population and that Ca, Fe, and Sb may compete for the binding centers of the cell.  相似文献   

7.
Elucidation of the different growth states of Ferroplasma species is crucial in understanding the cycling of iron in acid leaching sites. Therefore, a proteomic and biochemical study of anaerobic growth in ‘Ferroplasma acidarmanus’ Fer1 has been carried out. Anaerobic growth in Ferroplasma spp. occurred by coupling oxidation of organic carbon with the reduction of Fe3+; but sulfate, nitrate, sulfite, thiosulfate, and arsenate were not utilized as electron acceptors. Rates of Fe3+ reduction were similar to other acidophilic chemoorganotrophs. Analysis of the ‘F. acidarmanus’ Fer1 proteome by 2-dimensional polyacrylamide gel electrophoresis revealed ten key proteins linked with central metabolic pathways ≥4 fold up-regulated during anaerobic growth. These included proteins putatively identified as associated with the reductive tricarboxylic acid pathway used for anaerobic energy production, and others including a putative flavoprotein involved in electron transport. Inhibition of anaerobic growth and Fe3+ reduction by inhibitors suggests the involvement of electron transport in Fe3+ reduction. This study has increased the knowledge of anaerobic growth in this biotechnologically and environmentally important acidophilic archaeon.  相似文献   

8.
Biooxidation of refractory gold-bearing pyrite-arsenopyrite flotation concentrate was optimized and the abundance of predominant groups in the community of thermophilic acidophilic chemolithotrophic microorganisms at various stages of bioleaching was determined. The optimal parameters for growth and leaching/oxidation of the mineral components of the concentrate were pH 1.4–1.8; 47.5°C; and the following salt concentrations in the liquid phase (g/L): K2HPO4 · 3H2O ? 0.53, (NH4)2SO4, 1.6 and MgSO4 · 7H2O, 2.5 (or (NH4)2SO4, 1.23; ammophos, 0.41; KOH, 0.1) with 0.03% yeast extract. The optimal conditions resulted in high growth rate, high levels of iron and arsenic leaching, of Fe2+ and S2?/S0 oxidation, and predominance of Acidithiobacillus caldus, Sulfobacillus spp., and Ferroplasma spp. in the community.  相似文献   

9.
Microbes such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans have been investigated a lot, because of their important role in acid mine drainage (AMD) generation. In this article, the composition of microbial communities in two AMD samples was studied. A culture-independent 16S rDNA-based cloning approach, restriction fragment length polymorphism has been used. The interaction between microbes and natural pyrite specimen surface was researched by scanning electrode microscopy (SEM) and fluorescence in situ hybridization (FISH). The phylogenetic analysis revealed bacteria in these two samples fell into three major groups: Proteobacteria, Nitrospira, and Firmicutes. Archaea was also detected in these two samples. Thermoplasma and Ferroplasma lineages were abundant. From SEM and FISH, a number of A. ferrooxidans, a few cells of Archaea and Acidiphilium were detected adsorbed on the pyrite specimen surface. Leptospirillum sp. (hybridize with the probe LF655) has not been detected to be present on the pyrite specimen surface.  相似文献   

10.
Quantitative and qualitative composition of the cultivated acidophilic microorganisms obtained from the enrichment cultures on the universal medium inoculated with the samples of Shanuch deposit (Kamchatka peninsula) was investigated. The clone library (N = 93) containing eubacterial and archaeal 16S rRNA gene insertions was analyzed. DNA sequences were grouped into 5 ribotypes related to four known genera and one family. Most microorganisms (92%) were shown to belong to the genus Acidithiobacillus. One more group of microorganisms was identified as belonging to the family Acetobacteriaceae (3%); one microorganism was identified as a member of the genus Acidiphilium. Apart from eubacteria, the sequences specific for archaea of the genera Thermococcus (3%) and Ferroplasma (2%) were found; however, these sequences could not be reliably referred to any known species. Quantitative ratio of the microorganisms from the enrichment cultures was determined using real-time PCR. Species-specific test systems were used to determine that the sequences of A. ferrooxidans, A. thiooxidans, and Ferroplasma acidiphilum present in the samples in the ratio of 62, 4, and 0.14%, respectively.  相似文献   

11.
Hydrocarbon-degrading microorganisms (HDM) associated with the rhizosphere of Paspalum vaginatum and Zoysia tenuifolia grown in bioremediated soil were isolated under controlled laboratory conditions. The isolation process was conducted at 30°C and 45°C to isolate mesophilic and thermotolerant microorganisms, respectively, under aerobic conditions. The isolated HDMs were identified using 16S rRNA gene sequencing and fatty acid methyl ester (FAME) analysis. Although differences in the genera of the isolated HDMs occurred between the two grasses, Arthrobacter spp and Bacillus spp were isolated from the rhizosphere of both plants. The efficiency of the isolated microorganisms in degrading a mixture of hydrocarbon compounds (HC) was also assessed. Among the bacterial isolates, Pseudomonas boreopolis was found to be the most effective HC degrader, while the only fungal isolate, Fusarium solani, demonstrated higher degradation rates than most of the bacterial isolates. A mixture of all the microbial isolates demonstrated a high degradation percent of HC. The isolated microorganisms thus appear to work synergistically to degrade efficiently all the tested organic compounds.  相似文献   

12.
Natural microbial communities are extremely diverse and contain uncharacterized but functionally important small molecules. By coupling a deuterium (D) labeling technique to high mass accuracy untargeted liquid chromatography-electrospray ionization-mass spectrometry (LC?CESI?CMS) metabolomic analysis, we found that natural acidophilic microbial biofilms dominated by bacteria of the genus Leptospirillum contained unusual lyso phosphatidylethanolamine (PE) lipids in high abundance (more than 10?nmol/mg of dry biomass). The unusual polar head group structure of these lipids is similar to lipids found in phylogenetically unrelated acidophilic chemoautolithotrophs and may be related to the affinity of these lipids for iron and calcium ions. Correlations of lyso phospholipid and proteome abundance patterns suggest a link between the lyso phospholipids and the UBA-type substrain of Leptospirillum group II. By combining untargeted metabolomics with D exchange we demonstrate the ability to identify cryptic but biologically functional small molecules in mixed microbial communities.  相似文献   

13.
Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of concrete corrosion in sanitary sewers. Thiobacillus species are often considered the major representative of the acid-producing bacteria in these environments, and members of the genus Acidiphilium have been implicated to support their growth. Active populations of selected Thiobacillus, Leptospirillum, and Acidiphilium species were compared to total bacterial populations growing on the surfaces of corroding concrete using three oligonucleotide probes that have been confirmed to recognize unique sequences of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and Thiobacillus thiooxidans (probe: Thio820), Leptospirilium ferrooxidans (Probe: Lept581) and members of the genus Acidiphilium (probe: Acdp821). With these genetic probes, fluorescent in situ hybridizations (FISH) were used to identify and enumerate selected bacteria in homogenized biofilm samples taken from the corroding crowns of concrete sewer collection systems operating in Houston, Texas, USA. Direct epifluorescent microscopy demonstrated the ability of FISH to identify significant numbers of active acidophilic bacteria among concrete particles, products of concrete corrosion (e.g. CaSO4), and other mineral debris. As judged by FISH analyses with the species-specific probe Thio820, and a domain-level probe that recognizes all Bacteria (Eub338), T. ferrooxidans and T. thiooxidans comprised between 12% and 42% of the total active Bacteria present in corroding concrete samples. Although both Acidiphilium and Leptospirillum have also been postulated to have ecological significance in acidic sulfur-oxidizing environments, neither genera was detected using genus-specific probes (Lept581 and Acdp821).  相似文献   

14.

Background  

Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer) A. thiooxidans and A. caldus (sulfur oxidizers) that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below.  相似文献   

15.
Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.  相似文献   

16.
DNA was extracted from water and sediment samples taken from acidic, geothermal pools on the Caribbean island of Montserrat. 16S rRNA genes were amplified by PCR, cloned, sequenced, and examined to indicate some of the organisms that might be significant components of the in situ microbiota. A clone bank representing the lowest temperature pool that was sampled (33°C) was dominated by genes corresponding to two types of acidophiles: Acidiphilium-like mesophilic heterotrophs and thermotolerant Acidithiobacillus caldus. Three clone types with origins in low- and moderate- (48°C) temperature pools corresponded to bacteria that could be involved in metabolism of sulfur compounds: the aerobic A. caldus and putative anaerobic, moderately thermophilic, sulfur-reducing bacteria (from an undescribed genus and from the Desulfurella group). A higher-temperature sample indicated the presence of a Ferroplasma-like organism, dis-tinct from the other strains of these recently recognized acidophilic, iron-oxidizing members of the Euryarchaeota. Acidophilic Archaea from undescribed genera related to Sulfolobus and Acidianus were predicted to dominate the indigenous acidophilic archaeal population at the highest temperatures. Received: March 19, 2000 / Accepted: August 2, 2000  相似文献   

17.
Analysis of assembled random shotgun sequence data from a low-diversity, subsurface acid mine drainage (AMD) biofilm revealed a single nif operon. This was found on a genome fragment belonging to a member of Leptospirillum group III, a lineage in the Nitrospirae phylum with no cultivated representatives. Based on the prediction that this organism is solely responsible for nitrogen fixation in the community, we pursued a selective isolation strategy to obtain the organism in pure culture. An AMD biofilm sample naturally abundant in Leptospirillum group III cells was homogenized, filtered, and serially diluted into a nitrogen-free liquid medium. The resulting culture in the terminal dilution grew autotrophically to a maximum cell density of ~106 cells/ml, oxidizing ferrous iron as the sole energy source. 16S rRNA-internal transcribed spacer region clone library analysis confirmed that the isolate is a member of Leptospirillum group III and that the culture is axenic. We propose the name Leptospirillum ferrodiazotrophum sp. nov. for this iron-oxidizing, free-living diazotroph. This study highlights how environmental sequence data can provide insights for culturing previously uncultured microorganisms.  相似文献   

18.
Acid rock drainage (ARD) originating from the Yasumi-ishi tunnel near the main tunnel of the Yanahara mine in Japan was characterized to be moderately acidic (pH 4.1) and contained iron at a low concentration (51?mg/L). The composition of the microbial community was determined by sequence analysis of 16S rRNA genes using PCR and denaturing gradient gel electrophoresis. The analysis of the obtained sequences showed their similarity to clones recently detected in other moderately acidic mine drainages. Uncultured bacteria related to Ferrovum- and Gallionella-like clones were dominant in the microbial community. Analyses using specific primers for acidophilic iron- or sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, Leptospirillum spp., Acidithiobacillus caldus, Acidithiobacillus thiooxidans, and Sulfobacillus spp. revealed the absence of these bacteria in the microbial community in ARD from the Yasumi-ishi tunnel. Clones affiliated with a member of the order Thermoplasmatales were detected as the dominant archaea in the ARD microbial population.  相似文献   

19.
Iron- and sulfate-reducing microorganisms play an important role for alkalinity-generating processes in mining lakes with low pH. In the acidic mining lake 111 in Lusatia, Germany, a passive in situ remediation method was tested in a large scale experiment, in which microbial iron and sulfate reduction are stimulated by addition of Carbokalk (a mixture of the nonsugar compounds of sugar beets and lime) and straw. The treated surface sediment consisted of three layers of different pH and geochemical composition. The top layer was acidic and rich in Fe(III), the second and third layer both showed moderately acidic to circum-neutral pH values, but only the second was rich in organics, strongly reduced and sulfidic. Aim of the study was to elucidate the relative importance of neutrophilic heterotrophic, acidophilic heterotrophic, and acidophilic autotrophic iron-reducing microorganisms in each of the three layers. In order to distinguish between them, the effect of their respective characteristic electron donors acetate, glucose, and elemental sulfur on potential iron reduction rates was investigated. Limitation of iron reduction by the availability of Fe(III) was revealed by the addition of Fe(OH)3. The three groups of iron-reducing microorganisms were quantified by most probable number (MPN) technique and their community composition was analyzed by cloning and sequencing of 16S rRNA genes. In the acidic surface layer, none of the three electron donors stimulated iron reduction; acetate even had an inhibiting effect. In agreement with this, no decrease of the added electron donors was observed. Iron reduction rates were low in comparison to the other layers. Iron reduction in layers 2 and 3 was enhanced by glucose and acetate, accompanied by a decrease of these electron donors. Addition of elemental sulfur did not enhance iron reduction in either layer. Layer 2 exhibited the highest iron reduction rate (4.08 mmol dm−3d−1) and the highest cell numbers in MPN media. In MPN enrichments from all layers, Acidithiobacillus-like sequences were frequent. In addition to these, sequences related to Fulvimonas and Clostridium dominated in layer 1. MPN enrichments of layer 2 were diverse, containing Rhodocyclaceae-related sequences and surprisingly low numbers of Geobacteraceae. In layer 3, Sulfobacillus and Trichococcus spp. were also important. It was concluded that in the surface layer mainly acidophilic, probably autotrophic and heterotrophic, iron reducers were active, whereas in layers 2 and 3 mainly neutrophilic heterotrophs were important for iron reduction. These differ from well-studied Fe(III) reducers in other environments, so they deserve further study. The potential for acid-producing sulfur-driven Fe(III) reduction seemed not to be critical for in situ remediation.  相似文献   

20.
The study of the microbial ecology in extreme acidic environments has provided an important foundation for the development of mineral biotechnology. The present investigation reports the isolation, identification and molecular characterization of indigenous manganese (Mn) solubilizing acidophilic bacterial strains from mine water samples from Odisha, India. Four morphologically distinct bacterial strains showing visible growth on Mn-supplemented plates of varying pH were isolated and identified. Mn solubilizing ability of the isolates was tested by growing them on Mn-supplemented agar plates. The appearance of lightening around the growing colonies of all the isolates demonstrated their Mn solubilizing ability in the medium. 16 S rRNA sequencing was carried out and the bacterial isolates were taxonomically classified as Enterobacter sp. AMSB1, Bacillus cereus AMSB3, Bacillus nealsonii AMSB4 and Staphylococcus hominis AMSB5. The evolutionary timeline was studied by constructing neighbor-joining phylogenetic trees. The ability of acidophilic microorganisms to solubilize heavy metals is supported by five basic mechanisms which include: enzymatic conversion, metal effluxing, reduction in sensitivity of cellular targets, intra- or extracellular sequestration, and permeability barrier exclusion. Such ecological studies undoubtedly will provide insights into Mn biogeochemical processes occurring in leaching environments. The application of acidophilic microbiology in mineral biorecovery and beneficiation has a large future potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号