首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The fatty acid elongase-1 β-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved cysteine and four conserved histidine residues. Each of the conserved cysteine and histidine residues was individually converted by site-directed mutagenesis to both alanine and serine, and alanine and lysine respectively. After expression in yeast cells, the mutant enzymes were analyzed for their fatty acid elongase activity. Our results indicated that only cysteine 223 is an essential residue for enzyme activity, presumably for acyl chain transfer. All histidine substitutions resulted in complete loss of elongase activity. The loss of activity of these mutants was not due to their lower expression level since immunoblot analysis confirmed each was expressed to the same extent as the wild type FAE1 KCS.  相似文献   

3.
As precursors of wax compounds, very long chain fatty acids participate in the limitation of non-stomatal water loss and the prevention of pathogen attacks. They also serve as energy storage in seeds and as membrane building blocks. Their biosynthesis is catalyzed by the acyl-CoA elongase, a membrane-bound enzymatic complex containing four distinct enzymes (KCS, KCR, HCD and ECR). Twenty-one 3-ketoacyl-CoA synthase (KCS) genes have been identified in Arabidopsis thaliana genome. In this paper we present an overview of the acyl-CoA elongase genes in Arabidopsis focusing on the entire KCS family. We show that the KCS family is made up of 8 distinct subclasses, according to their phylogeny, duplication history, genomic organization, protein topology and 3D modelling. The analysis of the subcellular localization in tobacco cells of the different subunits of the acyl-CoA elongase shows that all these proteins are localized in the endoplasmic reticulum demonstrating that VLCFA production occurs in this compartment. The expression patterns in Arabidopsis of the acyl-CoA elongase genes suggest several levels of regulations at the tissular or organ level but also under stress conditions suggesting a complex organization of this multigenic family.  相似文献   

4.
5.
倪郁  郭彦军 《遗传》2008,30(5):561-567
超长链脂肪酸(very long chain fatty acids, VLCFAs)在生物体中具有广泛的生理功能, 它们参与种子甘油酯、生物膜膜脂及鞘脂的合成, 并为角质层蜡质的生物合成提供前体物质。角质层是覆盖在植物地上部分最表层的保护层, 由角质和蜡质组成, 其中蜡质又分为角质层表皮蜡和内部蜡, 在植物生长发育、适应外界环境方面起重要作用。VLCFAs的合成由脂肪酰-CoA延长酶催化, 该酶是由b-酮脂酰-CoA合酶、b-酮脂酰-CoA还原酶、b-羟脂酰-CoA脱水酶和反式烯脂酰-CoA还原酶组成的多酶体系。合成后的VLCFAs通过脱羰基与酰基还原作用进入角质层蜡质合成途径, 形成各种蜡质组分。文章就VLCFAs及角质层蜡质合成代谢途径中相关酶基因研究进展方面做了综述, 并对植物蜡质基因研究中存在的问题提出一些看法。  相似文献   

6.
Plant epidermal wax forms a hydrophobic layer covering aerial plant organs which constitutes a barrier against uncontrolled water loss and biotic stresses. Wax biosynthesis requires the coordinated activity of a large number of enzymes for the formation of saturated very-long-chain fatty acids and their further transformation in several aliphatic compounds. We found in the available database 282 candidate genes that may play a role in wax synthesis, regulation and transport. To identify the most interesting candidates, we measured the level of expression of 204 genes in the aerial parts of 15-day-old Arabidopsis seedlings by performing microarray experiments. We showed that only 25% of the putative candidates were expressed to significant levels in our samples, thus significantly reducing the number of genes which will be worth studying using reverse genetics to demonstrate their involvement in wax accumulation. We identified a beta-keto acyl-CoA synthase gene, At5g43760, which is co-regulated with the wax gene CER6 in a number of conditions and organs. By contrast, we showed that neither the fatty acyl-CoA reductase genes nor the wax synthase genes were expressed in 15-day-old leaves and stems, raising questions about the identity of the enzymes involved in the acyl-reduction pathway that accounts for 20% of the total wax amount.  相似文献   

7.
8.
R Taylor  PH Chen  CC Chou  J Patel  SV Jin 《Autophagy》2012,8(9):1300-1311
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP 7 and IP 8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP 4 and IP 5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.  相似文献   

9.
Epicuticular wax production was evaluated along the length of expanding leek (Allium porrum L.) leaves to gain insight into the regulation of wax production. Leaf segments from the bottom to the top were analyzed for (a) wax composition and load; (b) microsomal fatty acid elongase, plastidial fatty acid synthase, and acyl-acyl carrier protein (ACP) thioesterase activities; and (c) tissue and cellular morphological changes. The level of total wax, which was low at the bottom, increased 23-fold along the length of the leaf, whereas accumulation of the hentriacontan-16-one increased more than 1000-fold. The onset of wax accumulation was not linked to cell elongation but, rather, occurred several centimeters above the leaf base. Peak microsomal fatty acid elongation activity preceded the onset of wax accumulation, and the maximum fatty acid synthase activity was coincident with the onset. The C16:0- and C18:0-ACP-hydrolyzing activities changed relatively little along the leaf, whereas C18:1-ACP-hydrolyzing activity increased slightly prior to the peak elongase activity. Electron micrographic analyses revealed that wax crystal formation was asynchronous among cells in the initial stages of wax deposition, and morphological changes in the cuticle and cell wall preceded the appearance of wax crystals. These studies demonstrated that wax production and microsomal fatty acid elongation activities were induced within a defined and identifiable region of the expanding leek leaf and provide the foundation for future molecular studies.  相似文献   

10.
11.
While de novo fatty acid synthesis uses acetyl-CoA, fatty acid elongation uses longer-chain acyl-CoAs as primers. Several mutations that interfere with fatty acid elongation in yeast have already been described, suggesting that there may be different elongases for medium- and long-chain acyl-CoA primers. In the present study, an experimental approach is described that allows differential characterization of the various yeast elongases in vitro. Based on their characteristic primer specificities and product patterns, at least three different yeast elongases are defined. Elongase I extends C12-C16 fatty acyl-CoAs to C16-C18 fatty acids. Elongase II elongates palmitoyl-CoA and stearoyl-CoA up to C22 fatty acids, and elongase III synthesizes 20-26-carbon fatty acids from C18-CoA primers. Elongases I, II and III are specifically inactivated in, respectively, elo1, elo2 and elo3 mutants. Elongases II and III share the same 3-ketoacyl reductase, which is encoded by the YBR159w gene. Inactivation of YBR159w inhibits in vitro fatty acid elongation after the first condensation reaction. Although in vitro elongase activity is absent, the mutant nevertheless contains 10-30% of normal VLCFA levels. On the basis of this finding, an additional elongating activity is inferred to be present in vivo. ybr159Delta cells show synthetic lethality in the presence of cerulenin, which inactivates fatty acid synthase. An involvement of FAS in VLCFA synthesis may account for these findings, but remains to be demonstrated directly. Alternatively, a vital role for C18 and C20 hydroxyacids, which are dramatically overproduced in ybr159Delta cells, may be postulated.  相似文献   

12.
ABSTRACT. Euglena gracilis is able to synthesize adenosine triphosphate under anaerobic conditions through a malonyl-independent fatty acid synthesis leading to wax ester fermentation. Mitochondrial fatty acid synthesis uses acetyl-CoA and propionyl-CoA as C2- and C3-donors for de novo synthesis of even- and odd-numbered fatty acids, respectively. Euglena' s wax ester fermentation has only been described in the E. gracilis strain 1224-5/25 Z. Here we investigate eight E. gracilis strains isolated in 1932–1958 from different localities in Europe and two bleached substrains of E. gracilis 1224-5/25, obtained by treatment with streptomycin and ofloxacin, and examine their anaerobic growth, wax ester fermentation, and wax ester composition. Under ambient oxygen levels, all strains accumulated wax esters in concentrations between 0.3% and 3.5% of the dry weight, but the strains revealed marked differences in wax ester accumulation with respect to anaerobic growth. Most fermenting strains tested showed increased wax ester synthesis under anaerobic conditions as well as the increased synthesis of odd-numbered fatty acids and alcohols suggesting an activation of the mitochondrial fatty acid biosynthesis pathway. Addition of the elongase inhibitor flufenacet to the growth medium specifically reduced the accumulation of odd-numbered fatty acids and alcohols and tended to increase the overall yield of anaerobic wax esters.  相似文献   

13.
In this study, we investigated the roles of very long-chain fatty acid (VLCFA) synthesis by fatty acid elongase 3 (ELO3) in the regulation of telomere length and life span in the yeast Saccharomyces cerevisiae. Loss of VLCFA synthesis via deletion of ELO3 reduced telomere length, and reconstitution of the expression of wild type ELO3, and not by its mutant with decreased catalytic activity, rescued telomere attrition. Further experiments revealed that alterations of phytoceramide seem to be dispensable for telomere shortening in response to loss of ELO3. Interestingly, telomere shortening in elo3Delta cells was almost completely prevented by deletion of IPK2 or KCS1, which are involved in the generation of inositol phosphates (IP4, IP5, and inositol pyrophosphates). Deletion of IPK1, which generates IP6, however, did not affect regulation of telomere length. Further data also suggested that elo3Delta cells exhibit accelerated chronologic aging, and reduced replicative life span compared with wild type cells, and deletion of KCS1 helped recover these biological defects. Importantly, to determine downstream mechanisms, epistasis experiments were performed, and data indicated that ELO3 and YKU70/80 share a common pathway for the regulation of telomere length. More specifically, chromatin immunoprecipitation assays revealed that the telomere binding and protective function of YKu80p in vivo was reduced in elo3Delta cells, whereas its non-homologues end-joining function was not altered. Deletion of KCS1 in elo3Delta cells recovered the telomere binding and protective function of Ku, consistent with the role of KCS1 mutation in the rescue of telomere length attrition. Thus, these findings provide initial evidence of a possible link between Elo3-dependent VLCFA synthesis, and IP metabolism by KCS1 and IPK2 in the regulation of telomeres, which play important physiological roles in the control of senescence and aging, via a mechanism involving alterations of the telomere-binding/protection function of Ku.  相似文献   

14.
Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis   总被引:4,自引:0,他引:4  
Wild-type Arabidopsis leaf epicuticular wax (EW) occurs as a smooth layer over the epidermal surface, whereas stem EW has a crystalline microstructure. Wild-type EW load was more than 10-fold lower on leaves than on stems. Compared with the EW on wild-type stems, EW on wild-type leaves had a much higher proportion of their total EW load in the form of alkanes and 1-alcohols; a large reduction in secondary alcohols, ketones, and esters; and a chain-length distribution for major EW classes that was skewed toward longer lengths. The eceriferum (cer) mutations often differentially affected leaf and stem EW chemical compositions. For example, the cer2 mutant EW phenotype was expressed on the stem but not on the leaf. Compared to wild type, the amount of primary alcohols on cer9 mutants was reduced on leaves but elevated on stems, whereas an opposite differential effect for primary alcohols was observed on cer16 leaves and stems. Putative functions for CER gene products are discussed. The CER4 and CER6 gene products may be involved in fatty aldehyde reduction and C26 fatty acylcoenzyme A elongation, respectively. CER1, CER8, CER9, and CER16 gene products may be involved in EW substrate transfer. The CER3 gene product may be involved in release of fatty acids from elongase complexes. CER2 gene product may have regulatory functions.  相似文献   

15.
Oil from oleaginous seeds is mainly composed of triacylglycerols. Very long chain fatty acids (VLCFAs) are major constituents of triacylglycerols in many seed oils and represent valuable feedstock for industrial purposes. To identify genetic factors governing natural variability in VLCFA biosynthesis, a quantitative trait loci (QTL) analysis using a recombinant inbred line population derived from a cross between accessions Bay-0 and Shahdara was performed in Arabidopsis thaliana. Two fatty acid chain length ratio (CLR) QTL were identified, with one major locus, CLR.2, accounting for 77% of the observed phenotypic variation. A fine mapping and candidate gene approach showed that a key enzyme of the fatty acid elongation pathway, the β-ketoacyl-CoA synthase 18 (KCS18), was responsible for the CLR.2 QTL detected between Bay-0 and Shahdara. Association genetics and heterologous expression in yeast cells identified a single point mutation associated with an alteration of KCS18 activity, uncovering the molecular bases for the modulation of VLCFA content in these two natural populations of Arabidopsis. Identification of this kcs18 mutant with altered activity opens new perspectives for the modulation of oil composition in crop plants.  相似文献   

16.
Waxes are components of the cuticle covering the aerial organs of plants. Accumulation of waxes has previously been associated with protection against water loss, therefore contributing to drought tolerance. However, not much information is known about the function of individual wax components during water deficit. We studied the role of wax ester synthesis during drought. The wax ester load on Arabidopsis leaves and stems was increased during water deficiency. Expression of three genes, WSD1, WSD6 and WSD7 of the wax ester synthase/diacylglycerol acyltransferase (WS/DGAT or WSD) family was induced during drought, salt stress and abscisic acid treatment. WSD1 has previously been identified as the major wax ester synthase of stems. wsd1 mutants have shown reduced wax ester coverage on leaves and stems during normal or drought condition, while wax ester loads of wsd6, wsd7 and of the wsd6wsd7 double mutant were unchanged. The growth and relative water content of wsd1 plants were compromised during drought, while leaf water loss of wsd1 was increased. Enzyme assays with recombinant proteins expressed in insect cells revealed that WSD6 and WSD7 contain wax ester synthase activity, albeit with different substrate specificity compared with WSD1. WSD6 and WSD7 localize to the endoplasmic reticulum (ER)/Golgi. These results demonstrated that WSD1 is involved in the accumulation of wax esters during drought, while WSD6 and WSD7 might play other specific roles in wax ester metabolism during stress.  相似文献   

17.
Land plants secrete a layer of wax onto their aerial surfaces that is essential for survival in a terrestrial environment. This wax is composed of long-chain, aliphatic hydrocarbons derived from very-long-chain fatty acids (VLCFAs). Using the Arabidopsis expressed sequence tag database, we have identified a gene, designated CUT1, that encodes a VLCFA condensing enzyme required for cuticular wax production. Sense suppression of CUT1 in transgenic Arabidopsis plants results in waxless (eceriferum) stems and siliques as well as conditional male sterility. Scanning electron microscopy revealed that this was a severe waxless phenotype, because stems of CUT1-suppressed plants were completely devoid of wax crystals. Furthermore, chemical analyses of waxless plants demonstrated that the stem wax load was reduced to 6 to 7% of wild-type levels. This value is lower than that reported for any of the known eceriferum mutants. The severe waxless phenotype resulted from the downregulation of both the decarbonylation and acyl reduction wax biosynthetic pathways. This result indicates that CUT1 is involved in the production of VLCFA precursors used for the synthesis of all stem wax components in Arabidopsis. In CUT1-suppressed plants, the C24 chain-length wax components predominate, suggesting that CUT1 is required for elongation of C24 VLCFAs. The unique wax composition of CUT1-suppressed plants together with the fact that the location of CUT1 on the genetic map did not coincide with any of the known ECERIFERUM loci suggest that we have identified a novel gene involved in wax biosynthesis. CUT1 is currently the only known gene with a clearly established function in wax production.  相似文献   

18.
The mammalian enzyme involved in the final elongation of de novo fatty acid biosynthesis following the building of fatty acids to 16 carbons by fatty acid synthase has yet to be identified. In the process of searching for genes activated by sterol regulatory element-binding protein 1 (SREBP-1) by using DNA microarray, we identified and characterized a murine cDNA clone that is highly similar to a fatty acyl-CoA elongase gene family such as Cig30, Sscs, and yeast ELOs. Studies on the cells overexpressing the full-length cDNA indicate that the encoded protein, designated fatty acyl-CoA elongase (FACE), has a FACE activity specific for long-chains; C12-C16 saturated- and monosaturated-fatty acids. Hepatic expression of this identified gene was consistently activated in the livers of transgenic mice overexpressing nuclear SREBP-1a, -1c, or -2. FACE mRNA levels are markedly induced in a refed state after fasting in the liver and adipose tissue. This refeeding response is significantly reduced in SREBP-1 deficient mice. Dietary PUFAs caused a profound suppression of this gene expression, which could be restored by SREBP-1c overexpression. Hepatic FACE expression was also highly up-regulated in leptin-deficient ob/ob mice. Hepatic FACE mRNA was markedly increased by administration of a pharmacological agonist of liver X-activated receptor (LXR), a dominant activator for SREBP-1c expression. These data indicated that this elongase is a new member of mammalian lipogenic enzymes regulated by SREBP-1, playing an important role in de novo synthesis of long-chain saturated and monosaturated fatty acids in conjunction with fatty acid synthase and stearoyl-CoA desaturase.  相似文献   

19.
《Autophagy》2013,9(9):1300-1311
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP7 and IP8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP4 and IP5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.  相似文献   

20.
Very-long-chain fatty acids (VLCFAs) with chain lengths from 20 to 34 carbons are involved in diverse biological functions such as membrane constituents, a surface barrier, and seed storage compounds. The first step in VLCFA biosynthesis is the condensation of two carbons to an acyl-coenzyme A, which is catalyzed by 3-ketoacyl-coenzyme A synthase (KCS). In this study, amino acid sequence homology and the messenger RNA expression patterns of 21 Arabidopsis (Arabidopsis thaliana) KCSs were compared. The in planta role of the KCS9 gene, showing higher expression in stem epidermal peels than in stems, was further investigated. The KCS9 gene was ubiquitously expressed in various organs and tissues, including roots, leaves, and stems, including epidermis, silique walls, sepals, the upper portion of the styles, and seed coats, but not in developing embryos. The fluorescent signals of the KCS9::enhanced yellow fluorescent protein construct were merged with those of BrFAD2::monomeric red fluorescent protein, which is an endoplasmic reticulum marker in tobacco (Nicotiana benthamiana) epidermal cells. The kcs9 knockout mutants exhibited a significant reduction in C24 VLCFAs but an accumulation of C20 and C22 VLCFAs in the analysis of membrane and surface lipids. The mutant phenotypes were rescued by the expression of KCS9 under the control of the cauliflower mosaic virus 35S promoter. Taken together, these data demonstrate that KCS9 is involved in the elongation of C22 to C24 fatty acids, which are essential precursors for the biosynthesis of cuticular waxes, aliphatic suberins, and membrane lipids, including sphingolipids and phospholipids. Finally, possible roles of unidentified KCSs are discussed by combining genetic study results and gene expression data from multiple Arabidopsis KCSs.Very-long-chain fatty acids (VLCFAs) are fatty acids of 20 or more carbons in length and are essential precursors of functionally diverse lipids, cuticular waxes, aliphatic suberins, phospholipids, sphingolipids, and seed oils in the Brassicaceae. These lipids are involved in various functions, such as acting as protective barriers between plants and the environment, impermeable barriers to water and ions, energy-storage compounds in seeds, structural components of membranes, and lipid signaling, which is involved in the hypersensitive response (Pollard et al., 2008; Kunst and Samuels, 2009; Franke et al., 2012). VLCFAs are synthesized by the microsomal fatty acid elongase complex, which catalyzes the cyclic addition of a C2 moiety obtained from malonyl-CoA to C16 or C18 acyl-CoA. The fatty acid elongation process has been shown to proceed through a series of four reactions: condensation of the C2 carbon moiety to acyl-CoA by 3-ketoacyl coenzyme A synthase (KCS), reduction of KCS by 3-ketoacyl coenzyme A reductase (KCR), dehydration of 3-hydroxyacyl-CoA by 3-hydroxyacyl-CoA dehydratase (PAS2), and reduction of trans-2,3-enoyl-CoA by trans-2-enoyl-CoA reductase (ECR). Except for KCS isoforms with redundancy, disruption of KCR1, ECR/ECERIFERUM10 (CER10), or PAS2 exhibited severe morphological abnormalities and embryo lethality, suggesting that VLCFA homeostasis is essential for plant developmental processes (Zheng et al., 2005; Bach et al., 2008; Beaudoin et al., 2009).Cuticular waxes that cover plant aerial surfaces are known to be involved in limiting nonstomatal water loss and gaseous exchanges (Boyer et al., 1997; Riederer and Schreiber, 2001), repelling lipophilic pathogenic spores and dust (Barthlott and Neinhuis, 1997), and protecting plants from UV light (Reicosky and Hanover, 1978). VLCFAs that are synthesized in the epidermal cells are either directly used or further modified into aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters for the synthesis of cuticular waxes. Reverse genetic analysis and Arabidopsis (Arabidopsis thaliana) epidermal peel microarray analysis (Suh et al., 2005) has enabled the research community to identify the functions of many genes involved in cuticular wax biosynthesis (Kunst and Samuels, 2009): CER1 (Bourdenx et al., 2011; Bernard et al., 2012), WAX2/CER3 (Chen et al., 2003; Rowland et al., 2007; Bernard et al., 2012), and MAH1(Greer et al., 2007; Wen and Jetter, 2009) have been shown to be involved in the decarbonylation pathway to form aldehydes, alkanes, secondary alcohols, and ketones, and acyl-coenzyme A reductase (FAR; Aarts et al., 1997; Rowland et al., 2006) and WSD1 (Li et al., 2008) have been shown to be involved in the decarboxylation pathway for the synthesis of primary alcohols and wax esters. The export of wax precursors to the extracellular space is mediated by a heterodimer of the ATP-binding cassette transporters in the plasma membrane (Pighin et al., 2004; Bird et al., 2007; McFarlane et al., 2010). In addition, glycosylphosphatidylinositol-anchored LTP (LTPG1) and LTPG2 contribute either directly or indirectly to the export of cuticular wax (DeBono et al., 2009; Lee et al., 2009; Kim et al., 2012).VLCFAs that are synthesized in the endodermis of primary roots, seed coats, and the chalaza-micropyle region of seeds are used as precursors for the synthesis of aliphatic suberins. The suberin layer is known to function as a barrier against uncontrolled water, gas, and ion loss and provides protection from environmental stresses and pathogens (Pollard et al., 2008; Franke et al., 2012). For aliphatic suberin biosynthesis, the ω-carbon of the VLCFAs is oxidized by the fatty acyl ω-hydroxylase (Xiao et al., 2004; Li et al., 2007; Höfer et al., 2008; Molina et al., 2008, 2009; Compagnon et al., 2009; Li-Beisson et al., 2009), and the ω-hydroxy VLCFAs are further oxidized into α,ω-dicarboxylic acids by the HOTHEAD-like oxidoreductase (Kurdyukov et al., 2006). α,ω-Dicarboxylic acids are acylated to glycerol-3-P via acyl-CoA:glycerol-3-P acyltransferase (Beisson et al., 2007; Li et al., 2007; Li-Beisson et al., 2009; Yang et al., 2010) or to ferulic acid. In addition, C18, C20, and C22 fatty acids are also reduced by FAR enzymes to primary fatty alcohols, which are a common component in root suberin (Vioque and Kolattukudy, 1997). Finally, the aliphatic suberin precursors are likely to be extensively polymerized and cross linked with the polysaccharides or lignins in the cell wall.In addition, VLCFAs are found in sphingolipids, including glycosyl inositolphosphoceramides, glycosylceramides, and ceramides and phospholipids, such as phosphatidylethanolamine (PE) and phosphatidyl-Ser (PS), which are present in the extraplastidial membrane (Pata et al., 2010; Yamaoka et al., 2011). For sphingolipid biosynthesis, VLCFA-CoAs and Ser are condensed to form 3-keto-sphinganine, which is subsequently reduced to produce sphinganine, a long chain base (LCB). LCBs are known to be further modified by 4-hydroxylation, 4-desaturation, and 8-desaturation (Lynch and Dunn, 2004; Chen et al., 2006, 2012; Pata et al., 2010). The additional VLCFAs are linked with 4-hydroxy LCBs via an amino group to form ceramides (Chen et al., 2008). The presence of VLCFA in sphingolipids may contribute to an increase of their hydrophobicity, membrane leaflet interdigitation, and the transition from a fluid to a gel phase, which is required for microdomain formation. In plants, PS is synthesized from CDP-diacylglycerol and Ser by PS synthase or through an exchange reaction between a phospholipid head group and Ser by a calcium-dependent base-exchange-type PS synthase (Vincent et al., 1999; Yamaoka et al., 2011). PE biosynthesis proceeds through decarboxylation via PS decarboxylase (Nerlich et al., 2007), the phosphoethanolamine transfer from CDP-ethanolamine to diacylglycerol (Kennedy pathway), and the exchange of the head group of PE with Ser via a base-exchange enzyme (Marshall and Kates, 1973). In particular, PS containing a relatively large amount of VLCFAs is enriched in endoplasmic reticulum (ER)-derived vesicles that may function in stabilizing small (70- to 80-nm-diameter) vesicles (Vincent et al., 2001).During the fatty acid elongation process, the first committed step is the condensation of C2 units to acyl-CoA by KCS. Arabidopsis harbors a large family containing 21 KCS members (Joubès et al., 2008). Characterization of Arabidopsis KCS mutants with defects in VLCFA synthesis revealed in planta roles and substrate specificities (based on differences in carbon chain length and degree of unsaturation) of KCSs. For example, FAE1, a seed-specific condensing enzyme, was shown to catalyze C20 and C22 VLCFA biosynthesis for seed storage lipids (James et al., 1995). KCS6/CER6/CUT1 and KCS5/CER60 are involved in the elongation of fatty acyl-CoAs longer than C28 VLCFA for cuticular waxes in epidermis and pollen coat lipids (Millar et al., 1999; Fiebig et al., 2000; Hooker et al., 2002). KCS20 and KCS2/DAISY are functionally redundant in the two-carbon elongation to C22 VLCFA, which is required for cuticular wax and root suberin biosynthesis (Franke et al., 2009; Lee et al., 2009). When KCS1 and KCS9 were expressed in yeast (Saccharomyces cerevisiae), KCS1 showed broad substrate specificity for saturated and monounsaturated C16 to C24 acyl-CoAs and KCS9 utilized the C16 to C22 acyl-CoAs (Trenkamp et al., 2004; Blacklock and Jaworski, 2006; Paul et al., 2006). Recently, CER2 encoding putative BAHD acyltransferase was reported to be a fatty acid elongase that was involved in the elongation of C28 fatty acids for the synthesis of wax precursors (Haslam et al., 2012).In this study, the expression patterns and subcellular localization of KCS9 were examined, and an Arabidopsis kcs9 mutant was isolated to investigate the roles of KCS9 in planta. Diverse classes of lipids, including cuticular waxes, aliphatic suberins, and sphingolipids, as well as fatty acids in various organs were analyzed from the wild type, the kcs9 mutant, and complementation lines. The combined results of this study revealed that KCS9 is involved in the elongation of C22 to C24 fatty acids, which are essential precursors for the biosynthesis of cuticular waxes, aliphatic suberins, and membrane lipids, including sphingolipids. To the best of our knowledge, this is the first study where a KCS9 isoform involved in sphingolipid biosynthesis was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号