首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We generated replacement sets for three highly conserved residues, Pro196, Pro197 and His199, that flank the catalytic nucleophile, Cys198. Pro196 and Pro197 have restricted mobility that could be important for the structural transitions known to be essential for activity. To test this hypothesis we obtained and characterized 13 amino acid substitutions for Pro196, 14 for Pro197 and 14 for His199. All of the Pro196 and Pro197 variants, except P197R, and four of the His199 variants complemented TS-deficient Escherichia coli cells, indicating they had at least 1% of wild-type activity. For all His199 mutations, k(cat)/K(m) for substrate and cofactor decreased more than 40-fold, suggesting that the conserved hydrogen bond network co-ordinated by His199 is important for catalysis. Pro196 can be substituted with small hydrophilic residues with little loss in k(cat), but 15- to 23-fold increases in K(m)(dUMP). Small hydrophobic substitutions for Pro197 were most active, and the most conservative mutant, P197A, had only a 5-fold lower k(cat)/K(m)(dUMP) than wild-type TS. Several Pro196 and Pro197 variants were temperature sensitive. The small effects of Pro196 or Pro197 mutations on enzyme kinetics suggest that the conformational restrictions encoded by the Pro-Pro sequence are largely maintained when either member of the pair is mutated.  相似文献   

2.
Thymidylate synthase (TS) catalyzes methylation of dUMP to dTMP and is the target of cancer chemotherapeutic agents (e.g. 5-fluorouracil). Here, we used error-prone PCR to mutagenize the full-length human TS cDNA and then selected mutants resistant to 5-fluorodeoxyuridine in a bacterial complementation system. We found that resistant mutants contained 1-5 amino acid substitutions and that these substitutions were located along the entire length of the polypeptide. Mutations were frequent near the active site Cys(195) and in the catalytically important Arg(50) loop; however, many mutations were also distributed throughout the remainder of the cDNA. Mutants containing a single amino acid replacement identified the following 14 residues as unreported sites of resistance: Glu(23), Thr(51), Thr(53), Val(84), Lys(93), Asp(110), Asp(116), Pro(194), Ser(206), Met(219), His(250), Asp(254), Tyr(258), and Lys(284). Many of these residues are distant from the active site and/or have no documented function in catalysis or resistance. We conclude that mutations distributed throughout the linear sequence and three-dimensional structure of human TS can confer resistance to 5-fluorodeoxyuridine. Our findings imply that long range interactions within proteins affect catalysis at the active site and that mutations at a distance can yield variant proteins with desired properties.  相似文献   

3.
We demonstrate a highly parallel strategy to analyze the impact of single nucleotide mutations on protein function. Using our method, it is possible to screen a population and quickly identify a subset of functionally interesting mutants. Our method utilizes a combination of yeast functional complementation, growth competition of mutant pools, and polymerase colonies. A defined mutant human glucose-6-phosphate-dehydrogenase library was constructed which contains all possible single nucleotide missense mutations in the eight-residue glucose-6-phosphate binding peptide of the enzyme. Mutant human enzymes were expressed in a zwf1 (gene encoding yeast homologue) deletion strain of Saccharomyces cerevisiae. Growth rates of the 54 mutant strains arising from this library were measured in parallel in conditions selective for active hG6PD. Several residues were identified which tolerated no mutations (Asp200, His201 and Lys205) and two (Ile199 and Leu203) tolerated several substitutions. Arg198, Tyr202, and Gly204 tolerated only 1-2 specific substitutions. Generalizing from the positions of tolerated and non-tolerated amino acid substitutions, hypotheses were generated about the functional role of specific residues, which could, potentially, be tested using higher resolution/lower throughput methods.  相似文献   

4.
5.
Methotrexate-resistant forms of human dihydrofolate reductase have the potential to protect healthy cells from the toxicity of methotrexate (MTX), to improve prognosis during cancer therapy. It has been shown that synergistic MTX-resistance can be obtained by combining two active-site mutations that independently confer weak MTX-resistance. In order to obtain more highly MTX-resistant human dihydrofolate reductase (hDHFR) variants for this application, we used a semi-rational approach to obtain combinatorial active-site mutants of hDHFR that are highly resistant towards MTX. We created a combinatorial mutant library encoding various amino acids at residues Phe31, Phe34 and Gln35. In vivo library selection was achieved in a bacterial system on medium containing high concentrations of MTX. We characterized ten novel MTX-resistant mutants with different amino acid combinations at residues 31, 34 and 35. Kinetic and inhibition parameters of the purified mutants revealed that higher MTX-resistance roughly correlated with a greater number of mutations, the most highly-resistant mutants containing three active site mutations (Ki(MTX)=59-180 nM; wild-type Ki(MTX)<0.03 nM). An inverse correlation was observed between resistance and catalytic efficiency, which decreased mostly as a result of increased KM toward the substrate dihydrofolate. We verified that the MTX-resistant hDHFRs can protect eukaryotic cells from MTX toxicity by transfecting the most resistant mutants into DHFR-knock-out CHO cells. The transfected variants conferred survival at concentrations of MTX between 100-fold and >4000-fold higher than the wild-type enzyme, the most resistant triple mutant offering protection beyond the maximal concentration of MTX that could be included in the medium. These highly resistant variants of hDHFR offer potential for myeloprotection during administration of MTX in cancer treatment.  相似文献   

6.
Point mutations in the cytoplasmic domain of myelin protein zero (P0; the major myelin protein in the peripheral nervous system) that alter a protein kinase Calpha (PKCalpha) substrate motif (198HRSTK201) or alter serines 199 and/or 204 eliminate P0-mediated adhesion. Mutation in the PKCalpha substrate motif (R198S) also causes a form of inherited peripheral neuropathy (Charcot Marie Tooth disease [CMT] 1B), indicating that PKCalpha-mediated phosphorylation of P0 is important for myelination. We have now identified a 65-kD adaptor protein that links P0 with the receptor for activated C kinase 1 (RACK1). The interaction of p65 with P0 maps to residues 179-197 within the cytoplasmic tail of P0. Mutations or deletions that abolish p65 binding reduce P0 phosphorylation and adhesion, which can be rescued by the substitution of serines 199 and 204 with glutamic acid. A mutation in the p65-binding sequence G184R occurs in two families with CMT, and mutation of this residue results in the loss of both p65 binding and adhesion function.  相似文献   

7.
Wnt signaling is involved in a wide range of developmental, physiological, and pathophysiological processes and is negatively regulated by Dickkopf1 (Dkk1). Dkk1 has been shown to bind to two transmembrane proteins, the low density lipoprotein receptor-related proteins (LRP) 5/6 and Kremen. Here, we show that Dkk1 residues Arg(197), Ser(198), and Lys(232) are specifically involved in its binding to Kremen rather than to LRP6. These residues are localized at a surface that is at the opposite side of the LRP6-binding surface based on a three-dimensional structure of Dkk1 deduced from that of Dkk2. We were surprised to find that the Dkk1 mutants carrying a mutation at Arg(197), Ser(198), or Lys(232), the key Kremen-binding residues, could antagonize Wnt signaling as well as the wild-type Dkk1. These mutations only affected their ability to antagonize Wnt signaling when both LRP6 and Kremen were coexpressed. These results suggest that Kremen may not be essential for Dkk1-mediated Wnt antagonism and that Kremen may only play a role when cells express a high level of LRP5/6.  相似文献   

8.
An expression library for active site mutants of human topoisomerase IIalpha (TOP2alpha) was constructed by replacing the sequence encoding residues 793-808 with a randomized oligonucleotide cassette. This plasmid library was transformed into a temperature-sensitive yeast strain (top2-1), and viable transformants were selected at the restrictive temperature. Among the active TOP2alpha mutants, no substitution was allowed at Tyr(805), the 5' anchor of the cleaved DNA, and only conservative substitutions were allowed at Leu(794), Asp(797), Ala(801), and Arg(804). Thus, these 5 residues are critical for human TOP2alpha activity, and the remaining mutagenized residues are less critical for function. Using the x-ray crystal structure of yeast TOP2 as a structural model, it can be deduced that these 5 functionally important residues lie in a plane. One of the possible functions of this plane may be that it interacts with the DNA substrate upon catalysis. The side chains of Ser(803) and Lys(798), which confer drug resistance, lie adjacent to this plane.  相似文献   

9.
Recent crystallographic studies reveal loops in human AP endonuclease 1 (APE1) that interact with the major and minor grooves of DNA containing apurinic/apyrimidinic (AP) sites. These loops are postulated to stabilize the DNA helix and the flipped out AP residue. The loop alpha8 interacts with the major groove on the 3' side of the AP site. To determine the essentiality of the amino acids that constitute the alpha8 loop, we created a mutant library containing random nucleotides at codons 222-229 that, in wild-type APE1, specify the sequence NPKGNKKN. Upon expression of the library (2 x 10(6) different clones) in Escherichia coli and multiple rounds of selection with the alkylating agent methyl-methane sulfonate (MMS), we obtained approximately 2 x 10(5) active mutants that complemented the MMS sensitivity of AP endonuclease-deficient E. coli. DNA sequencing showed that active mutants tolerated amino acid substitutions at all eight randomized positions. Basic and uncharged polar amino acids together comprised the majority of substitutions, reflecting the positively charged, polar character of the wild-type loop. Asn-222, Asn-226, and Asn-229 exhibited the least mutability, consistent with x-ray data showing that each asparagine contacts a DNA phosphate. Substitutions at residues 226-229, located nearer to the AP site, that reduced basicity or hydrogen bonding potential, increased Km 2- to 6-fold and decreased AP site binding; substitutions at residues 222-225 exhibited lesser effects. This initial mutational analysis of the alpha8 loop supports and extends the conclusion of crystallographic studies that the loop is important for binding of AP.DNA and AP site incision.  相似文献   

10.
Kim S  Shim J 《Molecules and cells》2008,25(1):119-123
Pyrimidine antagonists including 5-Fluorouracil (5-FU) have been used in chemotherapy for cancer patients for over 40 years. 5-FU, especially, is a mainstay treatment for colorectal cancer. It is a pro-drug that is converted to the active drug via the nucleic acid biosynthetic pathway. The metabolites of 5-FU inhibit normal RNA and DNA function, and induce apoptosis of cancer cells. One of the major obstacles to successful chemotherapy is the resistance of cancer cells to anti-cancer drugs. Therefore, it is important to elucidate resistance mechanisms to improve the efficacy of chemotherapy. We have used C. elegans as a model system to investigate the mechanism of resistance to 5-FU, which induces germ cell death and inhibits larval development in C. elegans. We screened 5-FU resistant mutants no longer arrested as larvae by 5-FU. We obtained 18 mutants out of 72,000 F1 individuals screened, and mapped them into three complementation groups. We propose that C. elegans could be a useful model system for studying mechanisms of resistance to anti-cancer drugs.  相似文献   

11.
Each of the two active sites of thymidylate synthase contains amino acid residues contributed by the other subunit. For example, Arg-178 of one monomer binds the phosphate group of the substrate dUMP in the active site of the other monomer [Hardy et al. (1987) Science 235, 448-455]. Inactive mutants of such residues should combine with subunits of other inactive mutants to form heterodimeric hybrids with one functional active site. In vivo and in vitro approaches were used to test this hypothesis. In vivo complementation was accomplished by cotransforming plasmid mixtures encoding pools of inactive Arg-178 mutants and pools of inactive Cys-198 mutants into a host strain deficient in thymidylate synthase. Individual inactive mutants of Arg-178 were also cotransformed with the C198A mutant. Subunit complementation was detected by selection or screening for transformants which grew in the absence of thymidine, and hence produced active enzyme. Many mutants at each position representing a wide variety of size and charge supported subunit complementation. In vitro complementation was accomplished by reversible dissociation and unfolding of mixtures of purified individual inactive Arg-178 and Cys-198 mutant proteins. With the R178F + C198A heterodimer, the Km values for dUMP and CH2H4folate were similar to those of the wild-type enzyme. By titrating C198A with R178F under unfolding-refolding conditions, we were able to calculate the kcat value for the active heterodimer. The catalytic efficiency of the single wild-type active site of the C198A + R178F heterodimer approaches that of the wild-type enzyme.  相似文献   

12.
The light chain of botulinum neurotoxin A (BoNT/A‐LC) is a Zn‐dependent protease that specifically cleaves SNAP25 of the SNARE complex, thereby impairing vesicle fusion and neurotransmitter release at neuromuscular junctions. The C‐terminus of SNAP25 (residues 141–206) retains full activity for BoNT/A‐LC‐catalyzed cleavage at P1‐P1' (Gln197‐Arg198). Using the structure of a complex between the C‐terminus of SNAP25 and BoNT/A‐LC as a model to design SNAP25‐derived pseudosubstrate inhibitors (SNAPIs) that prevent presentation of the scissile bond to the active site, we introduced multiple His residues to replace Ala‐Asn‐Gln‐Arg (residues 195–198) at the substrate cleavage site, with the intent to identify possible side‐chain interactions with the active site Zn. We also introduced multiple Gly residues between the P1‐P1' residues to explore the spatial tolerance within the active‐site cleft. Using a FRET substrate YsCsY, we compared a series of SNAPIs for inhibition of BoNT/A‐LC. Among the SNAPIs tested, several known cleavage‐resistant, single‐point mutants of SNAP25 were poor inhibitors, with most of the mutants losing binding affinity. Replacement with His at the active site did not improve inhibition over wildtype substrate. In contrast, Gly‐insertion mutants were not only resistant to cleavage, but also surprisingly showed enhanced affinity for BoNT/A‐LC. Two of the Gly‐insertion mutants exhibited 10‐fold lower IC50 values than the wildtype 66‐mer SNAP25 peptide. Our findings illustrate a scenario, where the induced fit between enzyme and bound pseudosubstrate fails to produce the strain and distortion required for catalysis to proceed.  相似文献   

13.
Resistance to 5-fluorocytosine (5-FC) has been poorly investigated in the yeast Candida glabrata. This study was conducted on laboratory mutants obtained by exposure of a wild-type isolate to 5-FC. Based on their susceptibility to 5-fluorouracil (5-FU), two of these mutants were selected for further analysis of the molecular mechanisms of 5-FC resistance. One mutant, resistant to both compounds, exhibited a missense mutation in the gene coding the cytosine deaminase and a decrease in the expression level of the gene coding the uridine monophosphate pyrophosphorylase. The other mutant that showed a reduced susceptibility to 5-FC and 5-FU exhibited an overexpression of the genes coding the thymidylate synthase and a cytosine permease, associated with a missense mutation in the last gene. Thus, beside mutations in the FUR1 gene which represent the most common cause of resistance to 5-FC, other mechanisms may also occur in C. glabrata.  相似文献   

14.
Lin X  Liu J  Maley F  Chu E 《Nucleic acids research》2003,31(16):4882-4887
The role of cysteine sulfhydryl residues on the RNA binding activity of human thymidylate synthase (TS) was investigated by mutating each cysteine residue on human TS to a corresponding alanine residue. Enzymatic activities of TS:C43A and TS:C210A mutant proteins were nearly identical to wild-type TS, while TS:C180A and TS:C199A mutants expressed >80% of wild-type enzyme activity. In contrast, TS:C195A was completely inactive. Mutant proteins, TS:C195A, TS:C199A and TS:C210A, retained RNA binding activity to nearly the same degree as wild-type human TS. RNA binding activity of TS:C43A was reduced by 30% when compared to wild-type TS, while TS:C180A was completely devoid of RNA binding activity. In vitro translation studies confirmed that mutant proteins TS:C43A, TS:C195A, TS:C199A and TS:C210A, significantly repressed human TS mRNA translation, while TS:C180A was unable to do so. To confirm the in vivo significance of the cysteine sulfhydryl residue, mutant proteins TS:C180A and TS:C195A were each expressed in human colon cancer HCT-C18:TS(–) cells that expressed a functionally inactive TS. A recombinant luciferase reporter gene under the control of a TS-response element was co-transfected into these same cells, and luciferase activity increased in the presence of the TS:C195A mutant TS protein to a level similar to that observed upon expression of wild-type TS protein. In contrast, luciferase activity remained unchanged in cells expressing the TS:C180A mutant protein. Taken together, these findings identify Cys-180 as a critical residue for the in vitro and in vivo translational regulatory effects of human TS.  相似文献   

15.
The EcoRI endonuclease is an important recombinant DNA tool and a paradigm of sequence-specific DNA-protein interactions. We have isolated temperature-sensitive (TS) EcoRI endonuclease mutants (R56Q, G78D, P90S, V97I, R105K, M157I, C218Y, A235E, M255I, T261I and L263F) and characterized activity in vivo and in vitro. Although the majority were TS for function in vivo, all of the mutant enzymes were stably expressed and largely soluble at both 30°C and 42°C in vivo and none of the mutants was found to be TS in vitro. These findings suggest that these mutations may affect folding of the enzyme at elevated temperature in vivo. Both non-conservative and conservative substitutions occurred but were not correlated with severity of the mutation. Of the 12 residues identified, 11 are conserved between EcoRI and the isoschizomer RsrI (which shares 50% identity), a further indication that these residues are critical for EcoRI structure and function. Inspection of the 2.8 Å resolution X-ray crystal structure of the wild-type EcoRI endonuclease-DNA complex revealed that: (1) the TS mutations cluster in one half of the globular enzyme; (2) several of the substituted residues interact with each other; (3) most mutations would be predicted to disrupt local structures; (4) two mutations may affect the dimer interface (G78D and A235E); (5) one mutation (P90S) occurred in a residue that is part of, or immediately adjacent to, the EcoRI active site and which is conserved in the distantly related EcoRV endonuclease. Finally, one class of mutants restricted phage in vivo and was active in vitro, whereas a second class did not restrict and was inactive in vitro. The two classes of mutants may differ in kinetic properties or cleavage mechanism. In summary, these mutations provide insights into EcoRI structure and function, and complement previous genetic, biochemical, and structural analyses.  相似文献   

16.
Thymidylate synthase (TS) is a major target of 5-fluorouracil (5-FU) and dihydropyrimidine dehydrogenase (DPD) is a rate-limiting enzyme in the degradation of 5-FU. Whether TS or DPD could be used as valuable parameters for 5-FU sensitivity in clinical patients are largely unknown. We analyzed TS and DPD expression in breast carcinomas to evaluate the clinicopathological significance of these enzymes in patients with invasive breast cancer receiving 5-FU-based chemotherapy. A total of 197 patients with invasive ductal carcinoma were included in our study. Both the TS and DPD expression were analyzed using immunohistochemical method for all the surgical samples. Sixty-three out of 197 (31.97%) patients are positive for TS expression, and 77 out of 197 (39.09%) patients are positive for DPD expression. TS expression was not correlated with DPD expression. Patients with TS-positivity had aggressive phenotype including large tumor size, low differentiation and nodal metastasis. DPD expression is not related with phenotype or prognosis. Multivariate analysis demonstrated that TS expression was an independent prognostic factor for both disease-free and overall survival. The current study demonstrated that TS but not DPD expression was associated with both progression and prognosis in breast cancer receiving 5-FU-based chemotherapy. TS expression in the primary tumor might be useful as a predictive parameter for the efficacy of 5-FU-based chemotherapy for breast cancer.  相似文献   

17.
The beta-Lactamase hydrolytic activity has arisen several times from DD-transpeptidases. We have been able to replicate the evolutionary process of beta-Lactamase activity emergence on a PBP2X DD-transpeptidase. Some of the most interesting changes, like modifying the catalytic properties of an enzyme, may require several mutations in concert; therefore it is essential to explore efficiently sequence space by generating the right diversity. We designed a biased combinatorial library in which biochemical and structural information were incorporated by site directed mutagenesis on relevant residues and then subjected to random mutagenesis to allow for mutations in unforeseen positions. We isolated mutants from this library conferring 10-fold higher cefotaxime resistance levels than the background wild-type through mutations exclusively in the coding sequence. We demonstrate that only three substitutions in the DD-transpeptidase active site, two produced by the directed and one by the random mutagenesis, are sufficient to acquire this activity. The purified product of one mutant (MutE) had a 10(5)-fold increase in cefotaxime deacylation rate allowing it to hydrolyze beta-Lactams yet it has apparently conserved DD-peptidase activity. This work is the first to show a possible evolutionary intermediate between a beta-Lactamase and a DD-transpeptidase necessary for the development of antibiotic resistance.  相似文献   

18.
We expressed the human immunodeficiency virus type 1 transactivator protein, Tat, in the wheat germ cell-free translation system and found it to exist as a monomer. The first coding exon (residues 1 to 72) of wheat germ-expressed Tat was resistant to trypsin digestion, indicating that it is a highly folded, independently structured protein domain. Several mutant Tat proteins were dramatically more sensitive to trypsin than the wild type was, suggesting that their reduced transactivation activities are the result of destabilized structures. Mutant proteins with single-amino-acid substitutions were also identified that had reduced transactivation activities but wild-type structures in the trypsin assay. These mutants clustered in two regions of Tat, at acidic residues 2 and 5 in the amino terminus and between residues 18 and 32. These mutants, wild type in structure but reduced in activity, identify residues in the wild-type protein that may directly contact other molecules during Tat function.  相似文献   

19.
The sensitivity of the homobasidiomyceteCoprinus cinereus to the benzimidazole fungicide benomyl allowed us to isolate β-tubulin mutants as strains resistant to benomyl. To understand the molecular basis for the interaction between benomyl and β tubulin and for cellular defects in the β-tubulin mutants, we first analyzed the wild-type β1-tubulin gene (benA) ofC. cinereus, revealing thatbenA contains eight introns and encodes a 445 amino-acid protein. We then characterized 16 β1-tubulin mutants. The 16 mutations involved 11 different amino-acid substitutions at 10 different residues in β1 tubulin. The mutated residues were widely distributed along the primary sequence of β1 tubulin, from residue 3 in the N-terminal domain to residue 350 in the intermediate domain, but half of them appeared to be close to the αβ intradimer interface in an atomic model determined by electron crystallography. The benomyl resistant strain BEN 193, which exhibits clear heat sensitivity for hyphal growth and defects in various cellular processes, had a novel mutation, i.e., the Leu to Phe substitution at residue 350. Benomyl resistance and the heat sensitivity in BEN 193 were suppressed by additional amino-acid substitutions at various residues in β1 tubulin, suggesting that conformational changes of β1 tubulin are involved in the alterations. The DDBJ/GeneBank/EMBL accession number for the sequence reported in this paper is AB000116.  相似文献   

20.
Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号