首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Notch pathway is a widely studied means of intercellular signaling responsible for the determination of cell fate, cell differentiation, and boundary formation (reviewed in ). The main effectors of this pathway, Notch (N) and Delta (Dl), have been shown to function as a receptor and ligand, respectively. Genetic and phenotypic studies suggest that Neuralized (Neu), a RING finger protein, also plays a role within the N-Dl pathway, although its biochemical function is unknown. Here, we show that Neu is required at the plasma membrane for functional activity and that its RING finger domain acts as an E3 ubiquitin ligase. These data suggest that the role of Neu is to target components of the N-Dl pathway for ubiquitination, allowing for propagation and/or regulation of the signal.  相似文献   

2.
Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X(4)-Cys-X(4)-Cys-X(28)-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.  相似文献   

3.
Autoantigen Ro52 is an E3 ubiquitin ligase   总被引:2,自引:0,他引:2  
Anti-Ro/SSA antibodies are classic autoantibodies commonly found in patients with Sj?gren's syndrome, a chronic autoimmune disease characterized by dryness of the eyes and mouth. The autoantibodies recognize a RING-finger protein, Ro52, whose function is still unknown. Since many RING-finger proteins have been identified as E3 ubiquitin ligases, this study was designed to determine whether Ro52 functions as an E3 ubiquitin ligase. For this purpose, recombinant Ro52 was purified from bacterial lysate and used to investigate its activity of E3 ubiquitin ligase in vitro. Its enzymatic activity was also tested in HEK293T cells using wild-type Ro52 and its RING-finger mutant. Our results indicated that Ro52 ubiquitinates itself in cooperation with E2 ubiquitin-conjugating enzyme UbcH5B, thereby validating that Ro52 is a RING-finger-type E3 ubiquitin ligase. Importantly, this ubiquitin modification is predominantly monoubiquitination, which does not target Ro52 to the proteasome for degradation.  相似文献   

4.
Apoptotic cell death and survival is controlled by pro- and antiapoptotic proteins. Because these proteins act on each other, cell fate is dictated by the relative activity of pro- versus antiapoptotic proteins. Here we report that BRUCE, a conserved 528 kDa peripheral membrane protein of the trans-Golgi network, protects cells against apoptosis and functions as an inhibitor of apoptosis (IAP). By using wild-type and mutant forms we show that BRUCE inhibits caspase activity and apoptosis depending on its BIR domain. Upon apoptosis induction, BRUCE is antagonized by three mechanisms: first, through binding to Smac; second, by the protease HtrA2; and third, by caspase-mediated cleavage. In addition to its IAP activity BRUCE has the distinctive property of functioning as a chimeric E2/E3 ubiquitin ligase with Smac being a substrate. Our work suggests that, owing to its two activities and its localization, BRUCE may function as a specialized regulator of cell death pathways.  相似文献   

5.
Runx1 is a key factor in the generation and maintenance of hematopoietic stem cells. Improper expression and mutations in Runx1 are frequently implicated in human leukemia. Here, we report that CHIP, the carboxyl terminus of Hsc70-interacting protein, also named Stub1, physically interacts with Runx1 through the TPR and Charged domains in the nucleus. Over-expression of CHIP directly induced Runx1 ubiquitination and degradation through the ubiquitin-proteasome pathway. Interestingly, we found that CHIP-mediated degradation of Runx1 is independent of the molecular chaperone Hsp70/90. Taken together, we propose that CHIP serves as an E3 ubiquitin ligase that regulates Runx1 protein stability via an ubiquitination and degradation mechanism that is independent of Hsp70/90.  相似文献   

6.
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.  相似文献   

7.
Functional dissection of a HECT ubiquitin E3 ligase   总被引:1,自引:0,他引:1  
Ubiquitination is one of the most prevalent protein post-translational modifications in eukaryotes, and its malfunction is associated with a variety of human diseases. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitination remain largely unknown. Here we used a combination of yeast proteome chip assays, genetic screening, and in vitro/in vivo biochemical analyses to identify and characterize eight novel in vivo substrates of the ubiquitinating enzyme Rsp5, a homolog of the human ubiquitin-ligating enzyme Nedd4, in yeast. Our analysis of the effects of a deubiquitinating enzyme, Ubp2, demonstrated that an accumulation of Lys-63-linked polyubiquitin chains results in processed forms of two substrates, Sla1 and Ygr068c. Finally we showed that the localization of another newly identified substrate, Rnr2, is Rsp5-dependent. We believe that our approach constitutes a paradigm for the functional dissection of an enzyme with pleiotropic effects.  相似文献   

8.
WWP2 is an E3 ubiquitin ligase for PTEN   总被引:1,自引:0,他引:1  
  相似文献   

9.
《Current biology : CB》2023,33(6):1138-1146.e5
  1. Download : Download high-res image (264KB)
  2. Download : Download full-size image
  相似文献   

10.
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.  相似文献   

11.
SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra- molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target.  相似文献   

12.
Numerous proteins participate and actively contribute to the various cellular mechanisms, where several of them are crucial for regular metabolism, including survival. Thus, to maintain optimal cellular physiology, cells govern protein quality control functions with the assistance of comprehensive actions of molecular chaperones, the ubiquitin-proteasome system, and autophagy. In the ubiquitin-proteasome pathway, few quality control E3 ubiquitin ligases actively participate against misfolded protein aggregation generated via stress conditions. But how these quality control E3s active expression levels returned to basal levels when cells achieved re-establishment of proteostasis is still poorly understood. Our current study demonstrated that LRSAM1 E3 ubiquitin ligase promotes the proteasomal degradation of quality control E3 ubiquitin ligase E6-AP. We have observed the co-localization and recruitment of LRSAM1 with E6-AP protein and noticed that LRSAM1 induces the endogenous turnover of E6-AP. Partial depletion of LRSAM1 elevates the levels of E6-AP and affects overall cell cycle regulatory proteins (p53 and p27) expression, including the rate of cellular proliferation. The current finding also provides an excellent opportunity to better understand the basis of the E6-AP associated pathomechanism of Angelman Syndrome disorder. Additionally, this study touches upon the novel potential molecular strategy to regulate the levels of one quality control E3 ubiquitin ligase with another E3 ubiquitin ligase and restore proteostasis and provide a possible therapeutic approach against abnormal protein aggregation diseases.  相似文献   

13.
14.
A significant fraction of all proteins are misfolded and must be degraded. The ubiquitin-proteasome pathway provides an essential protein quality control function necessary for normal cellular homeostasis. Substrate specificity is mediated by proteins called ubiquitin ligases. In the endoplasmic reticulum (ER) a specialized pathway, the endoplasmic reticulum associated degradation (ERAD) pathway provides means to eliminate misfolded proteins from the ER. One marker used by the ER to identify misfolded glycoproteins is the presence of a high-mannose (Man5-8GlcNAc2) glycan. Recently, FBXO2 was shown to bind high mannose glycans and participate in ERAD. Using glycan arrays, immobilized glycoprotein pulldowns, and glycan competition assays we demonstrate that FBXO2 preferentially binds unfolded glycoproteins. Using recombinant, bacterially expressed GST-FBXO2 as an unfolded protein sensor we demonstrate it can be used to monitor increases in misfolded glycoproteins after physiological or pharmaceutical stressors.  相似文献   

15.
Signal transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2 (SH2)-like domains as well as a YXXQ motif in its C-terminal region. Our previous study in T cells demonstrated that STAP-2 influences FAK protein levels through recruitment of E3 ubiquitin ligase, Cbl, to FAK. In the present study, we found that Cbl directly controls the protein levels and activity of STAP-2. STAP-2 physically interacted with Cbl through its PH and SH2-like domains. Small-interfering RNA-mediated reduction of endogenous Cbl restored STAP-2 protein levels. In contrast, over-expression of Cbl induced STAP-2 degradation. Importantly, Cbl-mediated regulation of STAP-2 protein levels affected Brk/STAP-2-induced STAT3 activation. These results indicate that Cbl regulates STAP-2 protein levels and Brk/STAP-2-mediated STAT3 activation.  相似文献   

16.
17.
There are 28 unique human members of the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligase family. Each member of the HECT E3 ubiquitin ligases contains a conserved bilobal HECT domain of approximately 350 residues found near their C-termini that is responsible for their respective ubiquitylation activities. Recent studies have begun to elucidate specific roles that each HECT E3 ubiquitin ligase has in various cancers, age-induced neurodegeneration, and neurological disorders. New structural models have been recently released for some of the HECT E3 ubiquitin ligases, but many HECT domain structures have yet to be examined due to chronic insolubility and/or protein folding issues. Building on these recently published structural studies coupled with our in-house experiments discussed in the present study, we suggest that the addition of ∼50 conserved residues preceding the N-terminal to the current UniProt defined boundaries of the HECT domain are required for isolating soluble, stable, and active HECT domains. We show using in silico bioinformatic analyses coupled with secondary structural prediction software that this predicted N-terminal α-helix found in all 28 human HECT E3 ubiquitin ligases forms an obligate amphipathic α-helix that binds to a hydrophobic pocket found within the HECT N-terminal lobe. The present study brings forth the proposal to redefine the residue boundaries of the HECT domain to include this N-terminal extension that will likely be critical for future biochemical, structural, and therapeutic studies on the HECT E3 ubiquitin ligase family.  相似文献   

18.
Angelman syndrome, a severe neurodevelopmental disease, occurs primarily due to genetic defects, which cause lack of expression or mutations in the wild-type E6AP/UBE3A protein. A proportion of the Angelman syndrome patients bear UBE3A point mutations, which do not interfere with the expression of the full-length protein, however, these individuals still develop physiological conditions of the disease. Interestingly, most of these mutations are catalytically defective, thereby indicating the importance of UBE3A enzymatic activity role in the Angelman syndrome pathology. In this study, we show that Angelman syndrome-associated mutants interact strongly with the proteasome via the S5a proteasomal subunit, resulting in an overall inhibitory effect on the proteolytic activity of the proteasome. Our results suggest that mutated catalytically inactive forms of UBE3A may cause defects in overall proteasome function, which could have an important role in the Angelman syndrome pathology.Ubiquitination is a highly specific process that involves a group of proteins responsible for adding ubiquitin molecules to cellular substrates, thereby resulting in the modulation of numerous cellular pathways.1 The deregulation of components of the ubiquitin conjugation system causes defects in many cellular functions and these have been associated with human pathogenesis.2 Of the components involved in the ubiquitin cascade, the E3 ubiquitin ligases provide the substrate specificity. By attaching ubiquitin molecules to their substrates, E3 ligases have direct control over the functions and, in many cases, protein turnover of these substrates. In addition, loss of function in a number of E3 enzymes has been shown to have an important role in the development of severe physiological conditions such as certain cancers and neurological disorders.3 A representative instance of the latter is Angelman syndrome (AS), a severe neurodevelopmental disorder, with clinical features of mental retardation, developmental delay, ataxia and epilepsy.4, 5 The principal protein affected in AS is the E3 ubiquitin ligase E6-associated protein (E6AP/UBE3A), the gene being found on chromosome 15q11-13. UBE3A was initially identified as an interacting partner of high-risk HPV-16 and -18 E6 oncoproteins,6, 7 but was subsequently found to be linked to the development of AS. AS develops mainly due to genetic defects that lead to the loss of expression of the maternal allele of the UBE3A gene in the hypothalamus.8, 9 Between 65 and 75% of AS patients have been diagnosed with the deletions of 15q11-13, 3–7% of patients show uniparental disomy and ~3% of cases have been found with imprinting defects, such that the functionally defective maternal copy of the gene is expressed in the brain.5 In addition, there are also 5–11% of individuals with AS whose sequence analyses show UBE3A mutations. Most of these have in-frame deletions that would be predicted to result in protein truncations,10, 11 but a number of those patients have milder mutations, such as point mutations, that do not affect the expression of the full-length protein.12, 13 The majority of these mutations however are defective in ubiquitin ligase activity, indicating that the loss of enzymatic activity of UBE3A is important in promoting the development of AS.14Studies have demonstrated that ubiquitin ligase activity of UBE3A has a role in the proteasome-dependent degradation of several cellular substrates, and it can be reasoned that defects in the regulation of some of these substrates can contribute to AS development. However, although a number of UBE3A target proteins have been identified, including Sox9, C/EBPα, α-Synuclein, p27, promyelocytic leukemia (PML) tumor suppressor, annexin A1, amplified in breast cancer 1 (AIB1) and HHR23A,15, 16, 17, 18, 19, 20, 21, 22 characterization of their interactions with UBE3A have only partially contributed to an understanding of the molecular mechanisms behind the development of AS pathology. In addition, UBE3A has also been shown to interact with other components of the proteasome degradatory pathway, including the ubiquitin ligases HERC2, Ring1B and EDD,23, 24, 25 and recent studies demonstrated a direct interaction between UBE3A and the proteasome itself.26, 27 Whether any of these interactions might also be involved in AS development is an open question. Thus, although many proteins are known to be targeted by UBE3A for proteasomal degradation, much less is known about UBE3A interactions with the proteasome itself, or how these interactions might affect substrate turnover, or whether perturbations in this association can contribute to AS development.The 26S proteasome is a complex cellular machine that contains a 20S central core, a hollow tube composed of multiple proteasome subunits, which contain proteolytic sites. On each end of the 20S proteolytic core, there is an ATP-dependent 19S regulatory particle, which is involved in capturing the ubiquitinated proteins.28 Among several subunits that are part of the 19S regulatory particle complex, there are two major ubiquitin receptors, Rpn10/S5a and Rpn13.29, 30, 31 The S5a subunit mediates the targeting of ubiquitin substrates to the proteasome by binding ubiquitin conjugates through a ubiquitin-interacting motif (UIM)32 and loss of this activity of S5a results in decreased proteolytic activity of the proteasome.33, 34, 35 It has also been shown that S5a is regulated by mono-ubiquitination, which inhibits its ability to interact with ubiquitin-conjugated substrates, and also leads to decreased proteasome activity.31 Recent studies have shown that UBE3A can directly ubiquitinate the S5a subunit, and that its Drosophila ortholog, Ube3a, mediates ubiquitination of the Drosophila S5a homolog, resulting in its subsequent degradation.26, 27 Structural studies have indicated that a number of AS-associated UBE3A point mutations occur in the HECT domain, which most likely lead to the expression of catalytically defective proteins.13, 14 We were therefore interested in investigating whether catalytically defective AS-associated point mutants can still interact with the S5a subunit and, furthermore, in determining whether they can exert any inhibitory effects on the proteasomal turnover of ubiquitinated substrates. We show here that AS-associated UBE3A mutants interact more strongly with S5a, with one of the consequences being a general inhibitory effect on the overall proteolytic activity of the proteasome. These results suggest that perturbation of overall proteasome function may be an important element in the development of AS, which thus shows many similarities with other proteasomal neurogical defects.  相似文献   

19.
Protein kinase C (PKC) isozymes play a central role in cellular signaling. Levels of PKC control the amplitude of agonist-induced signaling and alterations in these levels are associated with disease states, most notably cancer, yet mechanisms that control the turnover of the protein are poorly understood. Here we identify an E3 ligase that catalyzes the ubiquitin-mediated degradation of PKC. Specifically, we identified a RING finger domain-containing protein, RINCK (for RING-finger protein that interacts with C kinase) from a yeast two-hybrid screen using the amino terminus of PKCbeta as bait. RINCK encodes a protein of 581 amino acids that contains a RING finger domain, a B-box, and two coiled-coil regions, the three domains that form the signature motif of the large family of diverse TRIM (tripartite motif) proteins. Co-immunoprecipitation studies using tsA201 cells reveal that RINCK and PKC associate with each other in cells. Studies using fragments of PKCbeta reveal that this interaction is mediated by the C1A domain of PKC. RINCK induces the ubiquitination of PKC both in vitro and in cells. Overexpression of RINCK reduces the levels of PKC in cells, whereas genetic knockdown of endogenous RINCK increases the levels of PKC. This increase was observed for all PKC isozymes examined (including conventional, novel, and atypical). The RINCK-mediated degradation of PKC occurs independently of the classic phorbol ester-mediated down-regulation: genetic depletion of RINCK had no effect on the phorbol ester-mediated down-regulation and, additionally, up-regulated the levels of isozymes that cannot bind phorbol esters. Our data reveal a novel mechanism that provides amplitude control in PKC signaling through ubiquitination catalyzed by RINCK, an E3 ligase that specifically recognizes the C1 domain of PKC isoforms.  相似文献   

20.
The NEDD8 pathway plays an essential role in various physiological processes, such as cell cycle progression and signal transduction. The conjugation of NEDD8 to target proteins is initiated by the NEDD8-activating enzyme composed of APP-BP1 and Uba3. In the present study, we show that APP-BP1 is degraded by ubiquitin-dependent proteolysis. To study biological functions of TRIP12, a HECT domain-containing E3 ubiquitin ligase, we used the yeast two-hybrid system and identified APP-BP1 as its binding partner. Immunoprecipitation analysis showed that TRIP12 specifically interacts with the APP-BP1 monomer but not with the APP-BP1/Uba3 heterodimer. Overexpression of TRIP12 enhanced the degradation of APP-BP1, whereas knockdown of TRIP12 stabilized it. In vitro ubiquitination assays revealed that TRIP12 functions as an E3 enzyme of APP-BP1 and additionally requires an E4 activity for polyubiquitination of APP-BP1. Moreover, neddylation of endogenous CUL1 was increased in TRIP12 knockdown cells, while complementation of the knockdown cells with TRIP12 lowered neddylated CUL1. Our data suggest that that TRIP12 promotes degradation of APP-BP1 by catalyzing its ubiquitination, which in turn modulates the neddylation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号