首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ng KW  Lawson J  Garner HR 《BioTechniques》2004,37(2):218, 220-218, 222
PathoGene is a web-based resource that streamlines the process of predicting genes in microorganisms and designs PCR primers for amplification to facilitate sequence analysis and experimentation. PathoGene currently supports primer design for every complete microbial, viral, and fungal genome as cataloged in GenBank by the National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/). The resulting primers can then be subjected to a stand-alone Basic Local Alignment Search Tool (BLAST) system called PathoBLAST in which the predicted PCR product and/or primers can be compared against the genome of interest or a similar genome to find related genes or estimate primer quality.  相似文献   

3.
We describe a new assembly algorithm, where a genome assembly with low sequence coverage, either throughout the genome or locally, due to cloning bias, is considerably improved through an assisting process via a related genome. We show that the information provided by aligning the whole-genome shotgun reads of the target against a reference genome can be used to substantially improve the quality of the resulting assembly.  相似文献   

4.
《Journal of molecular biology》2019,431(21):4217-4228
The influenza A virus (IAV), a respiratory pathogen for humans, poses serious medical and economic challenges to global healthcare systems. The IAV genome, consisting of eight single-stranded viral RNA segments, is incorporated into virions by a complex process known as genome packaging. Specific RNA sequences within the viral RNA segments serve as signals that are necessary for genome packaging. Although efficient packaging is a prerequisite for viral infectivity, many of the mechanistic details about this process are still missing. In this review, we discuss the recent advances toward the understanding of IAV genome packaging and focus on the RNA features that play a role in this process.  相似文献   

5.
The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.  相似文献   

6.
Genome duplications and polyploidization events are thought to have played relevant roles in the early stages of vertebrate evolution, in particular near the time of divergence of the lamprey lineage. Additional genome duplications, specifically in ray‐finned fish, may have occurred before the divergence of the teleosts. The role of polyploidization in vertebrate genome evolution is a thriving area of research. Sturgeons (order Acipenseriformes) provide a unique model for the investigation of genome duplication, with existing species possessing 120, 250 or 360 chromosomes. In the present study, data from 240 sturgeon specimens representing 11 species were used for analysis of ploidy levels. Allele numbers were assessed at eleven microsatellite loci. The results provide further evidence for functional diploidy, tetraploidy and hexaploidy in species possessing 120, 250 and 360 chromosomes, respectively. The analysis also uncovered novel evidence for functional hexaploidy in the shortnose sturgeon (Acipenser brevirostrum). In conclusion, the process of functional genome reduction is demonstrated to be an on‐going process in this fish lineage.  相似文献   

7.
Ward P  Elias P  Linden RM 《Journal of virology》2003,77(21):11480-11490
In cultured cells, adeno-associated virus (AAV) replication requires coinfection with a helper virus, either adenovirus or herpesvirus. In the absence of helper virus coinfection AAV can integrate its genome site specifically into the AAVS1 region of chromosome 19. Upon subsequent infection with a helper virus, the AAV genome is released from chromosome 19 by a process termed rescue, and productive replication ensues. The AAV genome cloned into a plasmid vector can also serve to initiate productive AAV replication. When such constructs are transfected into cells and those cells are simultaneously or subsequently infected with a helper virus, the AAV genome is released from the plasmid. This process is thought to serve as a model for rescue from the human genomic site. In this report we present a model for rescue of AAV genomes by replication. A hallmark of this model is the production of a partially single-stranded and partially double-stranded molecule. We show that the AAV2 Rep 68 protein, together with the UL30/UL42 herpes simplex virus type 1 DNA polymerase and the UL29 single-strand DNA binding protein ICP8, is sufficient to efficiently and precisely rescue AAV from a plasmid in a way that is dependent on the AAV inverted terminal repeat sequence.  相似文献   

8.
Sugarcane cultivars derive from interspecific hybrids obtained by crossing Saccharum officinarum and Saccharum spontaneum and provide feedstock used worldwide for sugar and biofuel production. The importance of sugarcane as a bioenergy feedstock has increased interest in the generation of new cultivars optimised for energy production. Cultivar improvement has relied largely on traditional breeding methods, which may be limited by the complexity of inheritance in interspecific polyploid hybrids, and the time-consuming process of selection of plants with desired agronomic traits. In this sense, molecular genetics can assist in the process of developing improved cultivars by generating molecular markers that can be used in the breeding process or by introducing new genes into the sugarcane genome. For meeting each of these, and additional goals, biotechnologists would benefit from a reference genome sequence of a sugarcane cultivar. The sugarcane genome poses challenges that have not been addressed in any prior sequencing project, due to its highly polyploid and aneuploid genome structure with a complete set of homeologous genes predicted to range from 10 to 12 copies (alleles) and to include representatives from each of two different species. Although sugarcane’s monoploid genome is about 1 Gb, its highly polymorphic nature represents another significant challenge for obtaining a genuine assembled monoploid genome. With a rich resource of expressed-sequence tag (EST) data in the public domain, the present article describes tools and strategies that may aid in the generation of a reference genome sequence.  相似文献   

9.
10.
Faithful chromosome segregation is critical in preventing genome loss or damage during cell division. Failure to properly disentangle catenated sister chromatids can lead to the formation of bulky or ultrafine anaphase bridges, and ultimately genome instability. In this review we present an overview of the current state of knowledge of how sister chromatid decatenation is carried out, with particular focus on the role of TOP2A and TOPBP1 in this process.  相似文献   

11.
12.
The central question in the molecular biology of differentiation is: why are new parts of the genome transcribed? Different hypotheses have been suggested for the control of the cytodifferentiation process. Many of these postulate a "time programme"; others postulate a "programme of events", leading to the conversion of cells to new phenotypes. In the model discussed here the fatter postulate is favoured, suggesting that the differentiation process is guided by the continuous and sequential changes of the microenvironment of the cell. The knowledge of the regularity of these changes is integrated as "evolutive experience", as a more or less fixed programme into the genome. Specific structures in the cell membrane (receptors, receptor areas) are able to perceive and transduce the signal of the environment. The signal can be transformed and regulated in the cell on different levels. For this process—the information flux from the cell membrane to the genome—the term " membrane impression " is proposed in contrast to the information flux from the genome to the cell membrane " gene expression ". It is mentioned that the differentiation process corresponds to the alternative interaction between the cell membrane and the genome. This typical Ping Pong interaction results in cell lineage. It is postulated that membrane receptors for the next anticipated signals are coexpressed with a specific phenotype of the cell. The possibility of the existence of different receptors is discussed.  相似文献   

13.
The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.  相似文献   

14.
脊椎动物的出现是动物进化历史上一次质的飞跃.由于所有的脊椎动物在其胚胎发育中都呈现连续的解剖学特征,因此过去很多学者都根据现存脊椎动物的形态特征和在其发育过程中的解剖学特征假想原始脊椎动物,并推导其进化过程和起源.近年来的研究表明,通过对脊椎动物和与之亲缘关系接近的物种之间进行基因家族、染色体结构分析,可以对脊椎动物进化提供很多线索和证据.更多的研究表明,脊椎动物在进化过程中很可能发生过整体基因组的复制, 基因和/或基因组的复制可能是引起脊椎动物形体结构复杂性增加的根本原因.因此,基因和基因组的复制正在成为生物进化研究的热点问题.但这两种复制方式中哪一种是产生动物形体结构和功能复杂性增加最重要的原因尚有争论.  相似文献   

15.
Gissi C  Iannelli F  Pesole G 《Heredity》2008,101(4):301-320
The mitochondrial genome (mtDNA) of Metazoa is a good model system for evolutionary genomic studies and the availability of more than 1000 sequences provides an almost unique opportunity to decode the mechanisms of genome evolution over a large phylogenetic range. In this paper, we review several structural features of the metazoan mtDNA, such as gene content, genome size, genome architecture and the new parameter of gene strand asymmetry in a phylogenetic framework. The data reviewed here show that: (1) the plasticity of Metazoa mtDNA is higher than previously thought and mainly due to variation in number and location of tRNA genes; (2) an exceptional trend towards stabilization of genomic features occurred in deuterostomes and was exacerbated in vertebrates, where gene content, genome architecture and gene strand asymmetry are almost invariant. Only tunicates exhibit a very high degree of genome variability comparable to that found outside deuterostomes. In order to analyse the genomic evolutionary process at short evolutionary distances, we have also compared mtDNAs of species belonging to the same genus: the variability observed in congeneric species significantly recapitulates the evolutionary dynamics observed at higher taxonomic ranks, especially for taxa showing high levels of genome plasticity and/or fast nucleotide substitution rates. Thus, the analysis of congeneric species promises to be a valuable approach for the assessment of the mtDNA evolutionary trend in poorly or not yet sampled metazoan groups.  相似文献   

16.
基因组注释是识别出基因组序列中功能组件的过程,其可以直接对序列赋予生物学意义,由此方便研究者探究和分析基因组功能.基因组注释可以帮助研究从三个层次上理解基因组,一种是在核苷酸水平的注释,主要确定DNA序列中基因、RNA、重复序列等组件的物理位置,包括转录起始,翻译起始,外显子边界等具体位置信息.同时可以注释得到变异在不...  相似文献   

17.
Whole genome engineering is now feasible with the aid of genome editing and synthesis tools. Synthesizing a genome from scratch allows modifications of the genomic structure and function to an extent that was hitherto not possible, which will finally lead to new insights into the basic principles of life and enable valuable applications. With several recent genome synthesis projects as examples, the technical details to synthesize a genome and applications of synthetic genome are addressed in this perspective. A series of ongoing or future synthetic genomics projects, including the different genomes to be synthesized in GP-write, synthetic minimal genome, massively recoded genome, chimeric genome and synthetic genome with expanded genetic alphabet, are also discussed here with a special focus on theoretical and technical impediments in the design and synthesis process. Synthetic genomics will become a commonplace to engineer pathways and genomes according to arbitrary sets of design principles with the development of high-efficient, low-cost genome synthesis and assembly technologies.  相似文献   

18.
Wu L  Hickson ID 《Mutation research》2002,509(1-2):35-47
The faithful replication of the genome is essential for the survival of all organisms. It is not surprising therefore that numerous mechanisms have evolved to ensure that duplication of the genome occurs with only minimal risk of mutation induction. One mechanism of genome destabilization is replication fork demise, which can occur when a translocating fork meets a lesion or adduct in the template. Indeed, the collapse of replication forks has been suggested to occur in every replicative cell cycle making this a potentially significant problem for all proliferating cells. The RecQ helicases, which are essential for the maintenance of genome stability, are thought to function during DNA replication. In particular, RecQ helicase mutants display replication defects and have phenotypes consistent with an inability to efficiently reinitiate replication following replication fork demise. Here, we review some current models for how replication fork repair might be effected, and discuss potential roles for RecQ helicases in this process.  相似文献   

19.
Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.  相似文献   

20.
RNA-mediated gene duplication has been proposed to create processed paralogs in the plant mitochondrial genome. A processed paralog may retain signatures left by the maturation process of its RNA precursor, such as intron removal and no need of RNA editing. Whereas it is well documented that an RNA intermediary is involved in the transfer of mitochondrial genes to the nucleus, no direct evidence exists for insertion of processed paralogs in the mitochondria (i.e., processed and un-processed genes have never been found simultaneously in the mitochondrial genome). In this study, we sequenced a region of the mitochondrial gene nad1, and identified a number of taxa were two different copies of the region co-occur in the mitochondria. The two nad1 paralogs differed in their (a) presence or absence of a group II intron, and (b) number of edited sites. Thus, this work provides the first evidence of co-existence of processed paralogs and their precursors within the plant mitochondrial genome. In addition, mapping the presence/absence of the paralogs provides indirect evidence of RNA-mediated gene duplication as an essential process shaping the mitochondrial genome in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号