首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been made on the interaction of four types of phosphorylated alkylchloroformoximes, i.e. analogues of an insecticide-acaricide valexon, with acetylcholinesterases from human erythrocytes and from the heads of the housefly Musca domestica. Antiacetylcholinesterase activity of the drugs depended both on the structure of the organophosphorus compounds, and the origin of the enzyme, indicating the existence of differences in the active surface of these acetylcholinesterases. Incorporation of one or two chloride atoms into alkylchloroformoxime group of the cleaved part of the organophosphorus compounds increased anticholinesterase activity with respect to both enzymes. Diethyl derivatives of these drugs exhibited higher specificity with respect to housefly enzyme as compared to human acetylcholinesterase.  相似文献   

2.
A series of nine synthetic polyaromatic compounds were synthesized by polymerization of aromatic ring monomers with formaldehyde, which yield substantially ordered backbones with different functional anionic groups (hydroxyl and carboxyl) on the phenol ring. These compounds were tested for their heparin-mimicking activity: (1) inhibition of heparanase activity; (2) inhibition of SMC proliferation; and (3) release of bFGF from the ECM. We demonstrate that compounds that have two hydroxyl groups para and ortho to the carboxylic group and a carboxylic group at a distance of two carbons from the phenol ring inhibit heparanase activity and SMC proliferation, as well as induced an almost complete release of bFGF from ECM. Addition of a methyl group next to the carboxylic group led to a preferential inhibition of heparanase activity. Similar results were obtained with a compound that contains one hydroxyl group para to the carboxylic group and an ether group near the carboxylic group on the phenol ring. Preferential inhibition of SMC proliferation was best achieved when the position of the hydroxyl group is para and ortho to the carboxylic group and the carboxylic group is at a distance of one carbon from the phenol ring. On the other hand, for maximal release of bFGF from ECM, the position of the carboxylic group should be three carbons away from the phenol ring. These new heparin-mimicking compounds may have a potential use in inhibition of tumor metastasis, arteriosclerosis, and inflammation.  相似文献   

3.
Two series of non-symmetrical bisquaternary pyridinium–quinolinium and pyridinium–isoquinolinium compounds were prepared as molecules potentially applicable in myasthenia gravis treatment. Their inhibitory ability towards human recombinant acetylcholinesterase and human plasmatic butyrylcholinesterase was determined and the results were compared to the known effective inhibitors such as ambenonium dichloride, edrophonium bromide and experimental compound BW284C51.Two compounds, 1-(10-(pyridinium-1-yl)decyl)quinolinium dibromide and 1-(12-(pyridinium-1-yl)dodecyl)quinolinium dibromide, showed very promising affinity for acetylcholinesterase with their IC50 values reaching nM inhibition of acetylcholinesterase. These most active compounds also showed satisfactory selectivity towards acetylcholinesterase and they seem to be very promising as leading structures for further modifications and optimization. Two of the most promising compounds were examined in the molecular modelling study in order to find the possible interactions between the ligand and tested enzyme.  相似文献   

4.
The asymmetric chloronicotinyl insecticide, 1-[1-(6-chloro-3-pyridyl)ethyl]-2-nitroiminoimidazolidine, was prepared, and the absolute configurations of the enantiomers were determined by an X-ray analysis. The insecticidal activity against the housefly measured with metabolic inhibitors showed the (S) enantiomer to be slightly more active than the (R) isomer. Electrophysiological measurements on the American cockroach central nerve cord showed the compounds to elicite the impulses and subsequently blocked them. The neuroblocking potency of the (S) isomer was 5.9 microM, while that of the (R) isomer was as high as 73 microM. The molar concentrations required for 50% inhibition of the specific binding of [3H]imidacloprid to the housefly head membrane preparation were respectively 0.19 microM and 0.95 microM for the (S) and (R) isomers. This enatioselectivity ratio was smaller than 35 for nicotine isomers but greater than 2 for epibatidine isomers.  相似文献   

5.
2-(2′-Hydroxy-2′,2′-diphenylethyl)-8-hydroxyquinoline was prepared via Grignard reaction involving the activated methyl group in position 2. This compound inhibited the action of the phenol oxidase prepared from prepupae of housefly. In a dipping test of the final instar larvae of housefly, it showed some inhibitory effects on the metamorphosis.  相似文献   

6.
Acyclic noncompetitive antagonists of ionotropic gamma-aminobutyric acid (GABA) receptors, bearing an ester or ether linkage, were designed, synthesized, and assayed for their inhibition of the specific binding of [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a radiolabeled noncompetitive antagonist, to rat brain and housefly head membranes. 5-[4-(3,3-Dimethylbutoxycarbonyl)phenyl]-4-pentynoic acid (DBCPP), a butyl benzoate analogue, was found to competitively inhibit the binding of [3H]EBOB in rat brain membranes, with an IC50 of 88 nM. The potency conferred by the p-substituent decreased in the order C(triple bond)C(CH2)2COOH > C(triple bond)C(CH2)2COOCH3 > C(triple bond) CH > Br. Pentyl phenyl ethers were equally potent compared with butyl benzoates, while phenyl pentanoates and benzyl butyl ethers were less pont. These compounds were generally less active in housefly head membranes than in rat brain membranes. The introduction of an isopropyl group into the 1-position of the 3,3-dimethylbutyl group of a butyl benzoate and two benzyl butyl ethers caused an increase in potency in housefly GABA receptors, whereas this modification at the corresponding position of other compounds led to an unchanged or decreased potency. In the case of rat receptors, this modification resulted in a decrease in potency except for a phenyl pentanoate. To confirm that DBCPP interferes with GABA receptor function, we performed whole-cell patch clamp experiments with rat dorsal root ganglion neurons in the primary culture. Repeated co-applications of GABA and DBCPP suppressed GABA-induced whole-cell currents with an IC50 of 0.54 microM and a Hill coefficient of 0.7. These findings indicate that DBCPP and its derivatives inhibit ionotropic GABA receptors by binding to the EBOB site and that there might be structural difference in the noncompetitive antagonist-binding site between rat and housefly GABA receptors.  相似文献   

7.
In order to find molecules of natural origin with potential biological activities, we isolate and synthesise compounds with agarofuran skeletons (epoxyeudesmanes). From the seeds of Maytenus disticha and Maytenus magellanica we obtained six dihydro-β-agarofurans, and by means of the Robinson annulation reaction we synthesised five compounds with the same skeleton. The structures were established on the basis of NMR, IR, and MS. The evaluated compounds showed inhibitory activity on the acetylcholinesterase enzyme and on the COX enzymes. Compound 4 emerged as the most potent in the acetylcholinesterase inhibition assay with IC50 17.0 ± 0.016 µM on acetylcholinesterase (AChE). The compounds evaluated were shown to be selective for AChE. The molecular docking, and the propidium displacement assay suggested that the compounds do not bind to the active site of the enzyme AChE, but rather bind to the peripheral anionic site (PAS) of the enzyme, on the other hand, the natural compound 8, showed the best inhibitory activity on the COX-2 enzyme with an IC50 value of 0.04 ± 0.007 µM. The pharmacokinetic profile calculated in silico using the SWISSADME platform shows that these molecules could be considered as potential drugs for the treatment of neurodegenerative diseases such as AD.  相似文献   

8.
A kinetic analysis of the interaction of anisomycin, acetoxycycloheximide, cycloheximide, and puromycin with acetylcholinesterase (acetylcholine acetyl-hydrolase, EC 3.1.1.7) in rat brain homogenate shows that all of these protein synthesis inhibitors are also inhibitors or this enzyme. Puromycitl aminonucleoside, a puromycin analog without antibiotic activity, was also found to be an inhibitor of acetylcholinesterase activity much like puromycin. Anisomycin appeared to be a competitive inhibitor whereas all of the other compounds showed mixed inhibition. The apparent 10.5 values for inhibition of rat brain acetylcholinesterase at 50 μM substrate were: anisomycin, 3 mM; acetoxycycloheximide, 1 mM; cycloheximide, 2.2 mM; puromycin, 0.5 mM and puromycin aminonucleoside, 0.6 mM.  相似文献   

9.
Differential inhibitions of soluble and membrane-bound acetylcholinesterase forms purified from mouse brain were examined by the comparison of kinetic constants such as a K m value, a Kss value (substrate inhibition constant), and IC50 values of active site-selective ligands including choline esters. Membrane-bound acetylcholinesterase form (solubilized only in the presence of detergent) showed lower Km and Kss values than soluble acetylcholinesterase form (easily solubilized without detergent). Edrophonium expressed a slightly but significantly (p<0.01) higher inhibition of detergent-soluble acetylcholinesterase form than aqueous-soluble acetylcholinesterase form, while physostigmine inhibited both forms with a similar potency. A remarkable difference in inhibition was observed using choline esters; although choline esters with acyl chain of a short size (acetyl-to butyrylcholine) or a long size (heptanoyl- to decanoylcholine) showed a similar inhibitory potency for two forms of acetylcholinesterase, pentanoylcholine and hexanoylcholine inhibited more strongly aqueous-soluble acetylcholinesterase than detergent-soluble acetylcholinesterase. Thus, it is suggested that the two forms of AChE may be distinguished kinetically by pentanoyl- or hexanoylcholine.This work was supported in part by Agency for Defense Development.  相似文献   

10.
The present study reports the effect of indanone derivatives on scopolamine induced deficit cholinergic neurotransmission serving as promising leads for the therapeutics of cognitive dysfunction. Eleven compounds 5464 have been designed, synthesised and evaluated against behavioural alterations using step down passive avoidance protocol at a dose of 0.5?mg/kg with Donepezil (1) as the reference standard. All the synthesised compounds were evaluated for their in vitro acetylcholinesterase (AChE) inhibition at five different concentrations using mice brain homogenate as the source of the enzyme. Compounds 54, 56, 59 and 64 displayed appreciable activity with an IC50 value of 14.06?µM, 12.30?µM, 14.06?µM and 12.01?µM, respectively towards acetylcholinesterase inhibition. The molecular docking study performed to predict the binding mode of the compounds suggested that these compounds could bind appreciably to the amino acids present at the active site of recombinant human acetylcholinesterase (rhAChE). The behavioural, biochemical and in silico pharmacokinetic studies were in concordance with each other.  相似文献   

11.
1. The inhibition of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) by compounds containing trifluoromethyl-carbonyl groups was investigated and related to the effects observed with structurally similar, non-fluorinated chemicals. 2. Compounds that in aqueous solution readily form hydrates inhibit acetylcholinesterase in a time-dependent process. On the other hand non-hydrated, carbonyl-containing compounds showed rapid and reversible, time-independent enzyme inactivation when assayed under steady state conditions. 3. m-N,N,N-Trimethylammonium-acetophenone acts as a rapid and reversible, time-independent, linear competitive inhibitor of acetylcholinesterase (Ki = 5.0 . 10(-7) M). 4. The most potent enzyme inhibitor tested in this series was N,N,N,-trimethylammonium-m-trifluoroacetophenone. It gives time-dependent inhibition and the concentration which inactivates eel acetylcholinesterase to 50% of the original activity after 30 min exposure is 1.3 . 10(-8) M. The bimolecular rate constant for this reaction is 1.8 . 10(6) 1 . mol-1 . min-1. The enzyme-inhibitor complex is very stable as the inhibited enzyme after 8 days of dialysis is reactivated to 20% only. This compound represents a quasi-substrate inhibitor of acetylcholinesterase.  相似文献   

12.
To develop new drugs for treatment of Alzheimer’s disease, a group of N′-2-(4-Benzylpiperidin-/piperazin-1-yl)acylhydrazones was designed, synthesized and tested for their ability to inhibit acetylcholinesterase, butyrylcholinesterase and aggregation of amyloid beta peptides (1–40, 1–42 and 1–40_1–42). The enzyme inhibition assay results indicated that compounds moderately inhibit both acetylcholinesterase and butyrylcholinesterase. β-Amyloid aggregation results showed that all compounds exhibited remarkable Aβ fibril aggregation inhibition activity with a nearly similar potential as the reference compound rifampicin, which makes them promising anti-Alzheimer drug candidates. Docking experiments were carried out with the aim to understand the interactions of the most active compounds with the active site of the cholinesterase enzymes.  相似文献   

13.
Several acetyl-protected hydroxybenzyl diethyl phosphates (EHBPs) that are capable of forming quinone methide intermediates were synthesized and their cell growth inhibitory properties were evaluated in four different human cancer cell lines. Compounds 1, 1a, and 1b, corresponding to (4-acetyloxybenzyl diethylphosphate), (3-methyl-4-acetyloxybenzyl diethylphosphate), and (3-chloro-4-acetyloxybenzyl diethylphosphate), were significantly more potent than compounds 2 and 3, (2-acetyloxybenzyl diethylphosphate) and (3-acetyloxybenzyl diethylphosphate), respectively. Using HT-29 human colon cancer cells, compounds 1 and 3 increased apoptosis, inhibited proliferation, and caused a G(2)/M block in the cell cycle. Our data suggest that these compounds merit further investigation as potential anti-cancer agents.  相似文献   

14.
Berberine derivatives with substituted amino groups linked at the 9-position using different carbon spacers were designed, synthesized, and biologically evaluated as inhibitors of acetylcholinesterase. Compound 10b, with a cyclohexylamino group linked to berberine by a three carbon spacer, gave the most potent inhibitor activity with an IC(50) of 0.020 μM for AChE. Kinetic studies revealed mixed inhibition of AChE, and molecular modeling simulations of the AChE-inhibitor complex confirmed that compounds bound to both the catalytic active site and the peripheral anionic site.  相似文献   

15.
Huperzia saururus (Lam.) Trevis. (Lycopodiaceae) is used widely in Argentinian traditional medicine as an aphrodisiac and for memory improvement. An aqueous extract from the aerial parts was obtained by decoction, revealing the presence of alkaloids, among other constituents. By partition with organic solvent in alkaline media, alkaloids were extracted and then purified by gel permeation. We studied the anticholinesterase activity in vitro of the alkaloid extract using erythrocyte membranes and human serum as sources of acetylcholinesterase and pseudocholinesterase, respectively. The results show a marked inhibition of true acetylcholinesterase with an IC50 value of 0.58 microg/ml. Low inhibition of pseudocholinesterase was observed (IC50 value = 191 microg/ml). This shows a selectivity of the extract for the true acetylcholinesterase. Furthermore, chemical study of the bioactive extract was performed by GC-MS, revealing the presence of seven Lycopodium alkaloids, including some not identified previously: sauroxine, 6-hydroxylycopodine, N-acetyllycodine, lycopodine, lycodine, N-methyllycodine, and clavolonine. Further investigations will be undertaken in order to discover which compound/s are responsible for the aqueous extract's acetylcholinesterase activity.  相似文献   

16.
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.  相似文献   

17.
A series of pyridoxine-resveratrol hybrids Mannich base derivatives as multifunctional agents have been designed, synthesized and evaluated for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activity. To further explore the multifunctional properties of the new derivatives, their antioxidant activities and metal-chelating properties were also tested. The results showed that most of these compounds could selectively inhibit acetylcholinesterase (AChE) and MAO-B. Among them, compounds 7d and 8b exhibited the highest potency for AChE inhibition with IC50 values of 2.11 μM and 1.56 μM, respectively, and compound 7e exhibited the highest MAO-B inhibition with an IC50 value of 2.68 μM. The inhibition kinetic analysis revealed that compound 7d showed a mixed-type inhibition, binding simultaneously to the CAS and PAS of AChE. Molecular modeling study was also performed to investigate the binding mode of these hybrids with MAO-B. In addition, all target compounds displayed good antioxidant and metal-chelating properties. Taken together, these preliminary findings can be a new starting point for further development of multifunctional agents for Alzheimer’s disease.  相似文献   

18.
A small library of novel spiropyrrolidine heterocyclic hybrids has been prepared regioselectively in 1-butyl-3-methylimidazoliumbromide ([bmim]Br) with good to excellent yields using a [3+2] cycloaddition reaction. These synthesized compounds were evaluated as potential agents for treating Alzheimer’s disease. Compound 4b showed the most potent activity, with an IC50 of 7.9 ± 0.25 µM against acetylcholinesterase (AChE). The inhibition mechanisms for the most active compounds on AChE and butyrylcholinesterase (BChE) receptors were elucidated using molecular docking simulations.  相似文献   

19.
A series of bezofuran appended 1,5-benzothiazepine compounds 7a–v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0?±?0.01 and 72?±?2.8?μM when compared with the standard donepezil (IC50, 2.63?±?0.28?μM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8?μM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.  相似文献   

20.
Finding a new type of cholinesterase inhibitor that would overcome the brain availability and pharmacokinetic parameters or hepatotoxic liability has been a focus of investigations dealing with the treatment of Alzheimer’s disease. Isothiocyanates have not been previously investigated as potential cholinesterase inhibitors. These compounds can be naturally produced from their glucosinolate precursors, secondary metabolites widely distributed in our daily Brassica vegetables. Among 11 tested compounds, phenyl isothiocyanate and its derivatives showed the most promising inhibitory activity. 2-Methoxyphenyl ITC showed best inhibition on acetylcholinesterase with IC50 of 0.57?mM, while 3-methoxyphenyl ITC showed the best inhibition on butyrylcholinesterase having 49.2% at 1.14?mM. Assessment of the antioxidant efficacy using different methods led to a similar conclusion. The anti-inflammatory activity was also tested using human COX-2 enzyme, ranking phenyl isothiocyanate, and 3-methoxyphenyl isothiocyanate as most active, with ~99% inhibition at 50?μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号