首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Chorismate mutase (EC 5.4.99.5) catalyzes the conversion of chorismic acid to prephenic acid. A continuous test of the enzymatic activity is based on the decrease of the absorption of the substrate chorismate at 274 nm (1). In a sensitive but discontinuous test, prephenic acid, the product of the enzymatic reaction is converted to phenylpyruvic acid. The absorbance of its enolic form is determined in alkaline solution at 320 nm (2,3). Another discontinuous test makes use of the absorption of the phenylpyruvate enol-borate complex (4,5) at 300 nm. The continuous test cannot be used when aromatic compounds are to be tested as modifiers of the enzymatic activity. Similarly, the tests based on the absorption of the enolic form of phenylpyruvic acid cannot be used when compounds which show a high absorbance in the 300 to 320 nm wavelength region are tested. This paper describes a test for chrismate mutase based on the determination of the 2,4-dinitrophenylhydrazone of the α-keto acid, phenylpyruvic acid. In alkaline solution the 2,4-dinitrophenylhydrazone of phenylpyruvic acid shows an absorption maximum at 440 nm, thus allowing one to test compounds like 3-hydroxybenzoic acid and 5-hydroxyisophthalic acid as potential inhibitors of the enzymatic reaction.  相似文献   

2.
On the mechanism of the chorismate mutase reaction.   总被引:1,自引:0,他引:1  
H G?risch 《Biochemistry》1978,17(18):3700-3705
  相似文献   

3.
The effector-regulated allosteric mechanism of yeast chorismate mutase (YCM) was studied by normal mode analysis and targeted molecular dynamics. The normal mode analysis shows that the conformational change between YCM in the R state and in the T state can be represented by a relatively small number of low-frequency modes. This suggests that the transition is coded in the structure and is likely to have a low energetic barrier. Quantitative comparisons (i.e. frequencies) between the low-frequency modes of YCM with and without effectors (modeled structures) reveal that the binding of Trp increases the global flexibility, whereas Tyr decreases global flexibility. The targeted molecular dynamics simulation of substrate analog release from the YCM active site suggests that a series of residues are critical for orienting and "recruiting" the substrate. The simulation led to the switching of a series of substrate-release-coupled salt-bridge partners in the ligand-binding domain; similar changes occur in the transition between YCM R-state and T-state crystal structures. Thus, the normal mode analysis and targeted molecular dynamics results provide evidence that the effectors regulate YCM activity by influencing the global flexibility. The change in flexibility is coupled to the binding of substrate to the T state and release of the product from the R state, respectively.  相似文献   

4.
Zusammenfassung Aus Kulturen von Streptomyces collinus (Stamm Tü 365) wurde ein neues, gelbes Antibioticum isoliert und durch analytische, spektroskopische und mikrobiologische Daten charakterisiert.
Metabolic products of microorganisms99. Kirromycin
Summary Kirromycin, a new yellow antibiotic, has been isolated from cultures of strain Tü 365 of Streptomyces collinus. It has been characterized by analytical, spectroscopic, and microbiological data.


98. Mitt.: Bayer, E., Gugel, K. H., Hägele, K., Hagenmaier, H., Jessipow, S., König, W. A., Zähner, H.: Helv. chim. Acta 55, 224–239 (1972).  相似文献   

5.
6.
Evidence for three isozymes of chorismate mutase in alfalfa   总被引:3,自引:0,他引:3  
  相似文献   

7.
8.
Combinatorial mutagenesis and in vivo selection experiments previously afforded functional variants of the AroH class Bacillus subtilis chorismate mutase lacking the otherwise highly conserved active site residue Arg(90). Here, we present a detailed kinetic and crystallographic study of several such variants. Removing the arginine side chain (R90G and R90A) reduced catalytic efficiency by more than 5 orders of magnitude. Reintroducing a positive charge to the active site through lysine substitutions restored more than a factor of a thousand in k(cat). Remarkably, the lysine could be placed at position 90 or at the more remote position 88 provided a sterically suitable residue was present at the partner site. Crystal structures of the double mutants C88S/R90K and C88K/R90S show that the lysine adopts an extended conformation that would place its epsilon-ammonium group within hydrogen-bonding distance of the ether oxygen of bound chorismate in the transition state. These results provide support for the hypothesis that developing negative charge in the highly polarized transition state is stabilized electrostatically by a strategically placed cation. The implications of this finding for the mechanism of all natural chorismate mutases and for the design of artificial catalysts are discussed.  相似文献   

9.
10.
Tryptophan: a feedback activator for chorismate mutase from Neurospora   总被引:5,自引:0,他引:5  
T I Baker 《Biochemistry》1966,5(8):2654-2657
  相似文献   

11.
The effect of viscosogens on the enzyme-catalyzed rearrangement of chorismate to prephenate has been studied. The steady-state parameters kcat and kcat/Km for the monofunctional chorismate mutase from Bacillus subtilis (BsCM) decreased significantly with increasing concentrations of glycerol, whereas the 'sluggish' BsCM mutants C75A and C75S were insensitive to changes in microviscosity. The latter results rule out extraneous interactions of the viscosogen as an explanation for the effects observed with the wild-type enzyme. Additional control experiments show that neither viscosogen-induced shifts in the pH-dependence of the enzyme-catalyzed reaction nor small perturbations of the conformational equilibrium of chorismate can account for the observed effects. Instead, BsCM appears to be limited by substrate binding and product release at low and high substrate concentrations, respectively. Analysis of the kinetic data indicates that diffusive transition states are between 30 and 40% rate-determining in these concentration regimes; the chemical step must contribute to the remaining kinetic barrier. The relatively low value of the 'on' rates for chorismate and prephenate (approximately 2 x 106 m-1.s-1) probably reflects the need for a rare conformation of the enzyme, the ligand, or both for successful binding. Interestingly, the chorismate mutase domain of the bifunctional chorismate mutase-prephenate dehydratase from Escherichia coli, which has steady-state kinetic parameters comparable to those of BsCM but has a much less accessible active site, is insensitive to changes in viscosity and the reaction it catalyses is not diffusion-controlled.  相似文献   

12.
13.
Comparison of chorismate mutase isozyme patterns in selected plants   总被引:2,自引:2,他引:0       下载免费PDF全文
A wide variety of plants have been assayed to determine if they contain three isozymes of chorismate mutase (EC 5.4.99.5) as does alfalfa (Medicago sativa L.) or two isozymes, as does mung bean (Phaseolus aureus). The isozymes were separated by disc electrophoresis. All anthophyta with the exception of some closely related Leguminosae contained three isozymes of chorismate mutase. The one coniferophyta (a pine), and pterophyta (a fern) and one microphyllophyta (a Selaginella) assayed contained two isozymes of chorismate mutase. All plants assayed contained measurable chorismate mutase levels and at least two isozymes of chorismate mutase.  相似文献   

14.
15.
Antibody 1F7 catalyzes the rearrangement of chorismate to prephenate. Its kinetic parameters are unaffected by changes in pH and display no solvent isotope effect or effects from addition of various cationic salts. These results are consistent with high-resolution structural information of 1F7 bound to a transition state analog.  相似文献   

16.
17.
The flavoenzyme uridine 5'-diphosphate (UDP)-galactopyranose mutase (UGM) catalyzes the interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf). The latter is an essential precursor to the cell wall arabinogalactan of Mycobacterium tuberculosis. The catalytic mechanism for this enzyme had not been elucidated. Here, we provide evidence for a mechanism in which the flavin cofactor assumes a new role. Specifically, the N5 of the reduced anionic flavin cofactor captures the anomeric position of the galactose residue with release of UDP. Interconversion of the isomers occurs via a flavin-derived iminium ion. To trap this putative intermediate, we treated UGM with radiolabeled UDP-Galp and sodium cyanoborohydride; a radiolabeled flavin-galactose adduct was obtained. Ultraviolet-visible spectroscopy and mass spectrometry indicate that this product is an N5-alkyl flavin. We anticipate that the clarification of the catalytic mechanism for UGM will facilitate the development of anti-mycobacterial agents.  相似文献   

18.
Multiple molecular forms of chorismate mutase in Bacillus subtillis   总被引:16,自引:0,他引:16  
J H Lorence  E W Nester 《Biochemistry》1967,6(5):1541-1553
  相似文献   

19.
Meloidogyne javanica chorismate mutase 1 alters plant cell development   总被引:2,自引:0,他引:2  
Root-knot nematodes are obligate plant parasites that alter plant cell growth and development by inducing the formation of giant cells for feeding. Nematodes inject secretions from their esophageal glands through their stylet and into plant cells to induce giant cell formation. Meloidogyne javanica chorismate mutase 1 (MjCM-1) is one such esophageal gland protein likely to be secreted from the nematode as giant cells form. MjCM-1 has two domains, an N-terminal chorismate mutase (CM) domain and a C-terminal region of unknown function. It is the N-terminal CM domain of the protein that is the predominant form produced in root-knot nematodes. Transgenic expression of MjCM-1 in soybean hairy roots results in a phenotype of reduced and aborted lateral roots. Histological studies demonstrate the absence of vascular tissue in hairy roots expressing MjCM-1. The phenotype of MjCM-1 expressed at low levels can be rescued by the addition of indole-3-acetic acid (IAA), indicating MjCM-1 overexpression reduces IAA biosynthesis. We propose MjCM-1 lowers IAA by causing a competition for chorismate, resulting in an alteration of chorismate-derived metabolites and, ultimately, in plant cell development. Therefore, we hypothesize that MjCM-1 is involved in allowing nematodes to establish a parasitic relationship with the host plant.  相似文献   

20.
Chorismate mutase of Brevibacterium flavum, a common enzyme in phenylalanine and tyrosine biosynthesis, was separted into two different component, A and B, with molecular weights of 250,000 and 25,000, respectively, by ammonium sulfate fractionation or gel-filtration. Both components were essential for the enzymatic activity. In the presence of the reaction substrate, chorismate, the two components associated reversibly to give an active enzyme complex with a molecular weight of 320,000. Binding sites of the feedback inhibitors, phenylalanine and tyrosine, on the enzyme were localized on component A as determined by hybridization experiments with the wild-type and mutant components. Tyrosine repressed the synthesis of component B much more strongly than that of component A, while phenylalanine did not show any significant repressive effect on either component. The wild-type strain No. 2247 had four times more component A than component B. Elution patterns in gel, DEAE-cellulose or hydroxyapatite column chromatography as well as the disc-gel electrophoretic pattern of chorismate mutase component A and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase activities completely overlapped, suggesting the presence of a bifunctional protein having the two activities. In accord with this suggestion, chorismate mutase as well as DAHP synthetase was insensitive to feedback inhibition by phenylalanine and tyrosine in all the 3-fluorophenylalanine-resistant mutants tested that excreted both phenylalanine and tyrosine. All the phenylalanine and tyrosine double auxotrophs defective in chorismate mutase lacked component B but not A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号