首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
20th Century Carbon Budget of Forest Soils in the Alps   总被引:2,自引:1,他引:1  
Dendrochronological studies and forest inventory surveys have reported increased growth and biospheric carbon (C) sequestration for European forests in the recent past. The potential of concomitant changes in forest soil C stocks are not accounted for in the IPCC guidelines for national greenhouse gas inventories. We developed a model-based approach to address this problem and assess the role of soils in forest C balance in the European Alps. The decomposition model FORCLIM-D was driven by long-term (that is, 1900–1985 AD) litter input scenarios constructed from forest inventory data, region-specific dendrochronological basal area indices, and time series of anthropogenic litter removal. The effect of spatial climate variability on organic matter decomposition across the case study region (Switzerland) was explicitly accounted for by constant long-term annual means of actual evapotranspiration and temperature. Uncertainties in forest development, litter removal, fine root litter input, and dynamics of forest soil C were studied by an explorative factorial sensitivity analysis. We found that forest soils contribute substantially to the biospheric C sequestration for Switzerland: Our “best estimate” yielded an increase of 0.35 Mt C/y or 0.33 t C/(ha y) in forest soils for 1985, that is, 27% of the C sequestered by forest trees (BUWAL 1994). Uncertainties regarding C accumulation in forest soils were substantial (0.11–0.58 Mt C/y) but could be reduced by estimating forest soil C stocks in the future. Whereas soils can be important for the C balance in naturally regrowing forests, their C sequestration is negligible (less than 5%) relative to anthropogenic CO2 emissions in Western Europe at present. Received 25 August 1998; accepted 17 March 1999.  相似文献   

2.
四川森林植被碳储量的时空变化   总被引:12,自引:0,他引:12  
黄从德  张健  杨万勤  唐宵 《应用生态学报》2007,18(12):2687-2692
利用平均木法建立森林生物量与蓄积量模型,结合四川森林资源二类调查数据,研究了森林碳密度和碳储量的时空变化.结果表明 四川森林碳储量从1974年的300.02 Tg增加到2004年的469.96 Tg,年均增长率1.51%,表明其是CO2的"汇".由于人工林面积的增加,森林植被的平均碳密度从49.91 Mg·hm-2减少到37.39 Mg·hm-2.四川森林碳储量存在空间差异性,表现为川西北高山峡谷区>川西南山区>盆周低山区>盆地丘陵区>川西平原区.森林碳密度由东南向西北呈现逐渐增加趋势,即盆地丘陵区<川西平原区<川西南山区<盆周低山区<川西北高山峡谷区.通过分区森林经营与管理将提高四川森林的碳吸存能力.  相似文献   

3.
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.  相似文献   

4.
周健  肖荣波  庄长伟  邓一荣 《生态学报》2013,33(18):5865-5873
城市森林及其管理相关政策作为减少CO2排放的有效策略得到了较为广泛的关注。采用材积源生物量方程与净初级生产力方法来定量分析了广州市城市森林碳储量和碳固定量,根据化石能源使用量及其碳排放因子核算了广州城市能源碳排放,最后评估了城市森林碳抵消效果。结果显示广州市城市森林碳储量为654.42×104t,平均碳密度为28.81 t/hm2,而森林碳固定量为658732 t/a,平均固碳率为2.90 t·hm-2·a-1。2005-2010年广州市年均能源碳排放则达到2907.41×104t。广州城市森林碳储量约为城市年均能源碳排放的22.51%,其通过碳固定年均能够抵消年均碳排放的2.27%,不过从城市森林综合效益来看其仍是城市低碳发展重要举措之一。分析了林型组成和林龄结构对于广州森林碳储量和碳固定量的影响,并从森林管理角度为城市森林碳汇提升提出建议。这些结果和讨论有助于评估城市森林碳汇在抵消碳排放中所起的效果。  相似文献   

5.
Using a slightly modified IPCC method, we examined changes in annual fluxes of CO_2and contributions of energy consumption, limestone use, waste combustion, land-use change, and forest growth to the fluxes in South Korea from 1990 to 1997. Our method required less data and resulted in a larger estimate of CO_2 released by industrial processes, comparing with the originalIPCC guideline. However, net CO_2 emission is not substantially different from the estimates of IPCC and modified methods. Net CO_2 emission is intimately related to GDP as Korean economyhas heavily relied on energy consumption and industrial activities, which are major sources of CO_2.Total efflux of CO_2 was estimated to be 63.6 Tg C/a in 1990 and amounted to 112.9 Tg C/a in 1997. Land-use change contributed to annual budget of CO_2 in a relatively small portion. Carbon dioxide was sequestered by forest biomass at the rate of 6.5 Tg C/a in 1990 and 8.5 Tg C/a in 1997. Al-though CO_2 storage in the forests increased, the sink effect was overwhelmed by extensive energy consumption, suggesting that energy-saving strategies will be more effective in reducing CO_2 emission in Korea than any other practices. It is presumed that plant uptake of CO_2 is underesti-mated as carbon contained in plant detritus and belowground living biomass were not fully consid-ered. Furthermore, the soil organic carbon stored in forest decomposes in various ways in rugged mountains depending on their conditions, such as slope, aspect and elevation, which could havean effect on decomposition rate and carbon stores in soils. Thus, carbon sequestration of forests deserves further attention.  相似文献   

6.
四川省森林植被固碳经济价值动态   总被引:3,自引:1,他引:2  
<正>确估算森林植被固碳经济价值可为森林生态系统的生态效益评价提供基础数据。利用1997年和2014年两期四川省森林资源清查数据,依据不同森林类型的生物量与蓄积量回归方程和支付意愿法,估算了四川省两个时期森林植被的固碳经济价值。结果表明,从1997年到2014年,四川省森林植被固碳经济价值由703.17亿元增长到865.75亿元,净增长162.58亿元,年均增长9.56亿元,年均增长率为1.36%;在两个时期,云冷杉林的固碳经济价值比重最大,分别占总固碳经济价值的54.82%和46.62%,表明云冷杉森林植被类型在全省森林植被固碳经济价值中占有重要的地位;四川省天然林和人工林植被的固碳经济价值均呈增加趋势,并且人工林植被固碳经济价值年均增长速率(7.42%)明显高于天然林(1.03%);四川省森林植被固碳经济价值总体上随林龄的增加而增加。研究结果说明,实施包括天然林保护工程在内的森林保护和经营管理措施对提高森林植被的固碳经济价值具有重要的作用。  相似文献   

7.
Elevated nitrogen (N) deposition may increase net primary productivity in N‐limited terrestrial ecosystems and thus enhance the terrestrial carbon (C) sink. To assess the magnitude of this N‐induced C sink, we performed a meta‐analysis on data from forest fertilization experiments to estimate N‐induced C sequestration in aboveground tree woody biomass, a stable C pool with long turnover times. Our results show that boreal and temperate forests responded strongly to N addition and sequestered on average an additional 14 and 13 kg C per kg N in aboveground woody biomass, respectively. Tropical forests, however, did not respond significantly to N addition. The common hypothesis that tropical forests do not respond to N because they are phosphorus‐limited could not be confirmed, as we found no significant response to phosphorus addition in tropical forests. Across climate zones, we found that young forests responded more strongly to N addition, which is important as many previous meta‐analyses of N addition experiments rely heavily on data from experiments on seedlings and young trees. Furthermore, the C–N response (defined as additional mass unit of C sequestered per additional mass unit of N addition) was affected by forest productivity, experimental N addition rate, and rate of ambient N deposition. The estimated C–N responses from our meta‐analysis were generally lower that those derived with stoichiometric scaling, dynamic global vegetation models, and forest growth inventories along N deposition gradients. We estimated N‐induced global C sequestration in tree aboveground woody biomass by multiplying the C–N responses obtained from the meta‐analysis with N deposition estimates per biome. We thus derived an N‐induced global C sink of about 177 (112–243) Tg C/year in aboveground and belowground woody biomass, which would account for about 12% of the forest biomass C sink (1,400 Tg C/year).  相似文献   

8.
中国退耕还林工程温室气体排放与净固碳量   总被引:1,自引:1,他引:1  
基于退耕还林工程建设期(2000—2010年)营造林过程边界内碳成本和边界外碳泄漏的计算,分析退耕还林工程及各区域碳成本和碳泄漏的年际变化、碳成本和碳泄漏的组成特征以及净固碳量的变化特征.结果表明: 退耕还林工程建设期内,西北地区、西南地区、东北地区、华北地区、中南华东地区的碳成本分别为3.38、3.64、1.03、1.66、4.38 Tg C,合计14.09 Tg C;碳泄漏分别为21.33、4.60、5.50、1.32、3.78 Tg C,合计36.53 Tg C.退耕还林工程及各区域工程措施碳成本组成特征较为一致,造林引起的碳排放是各区域最大的工程措施碳成本,其中退耕地造林是主要的造林碳成本来源.在各种物资消耗中,肥料引起的碳排放是各区域最大的物资碳成本,其次为建材,而燃油、灌溉和药剂产生的碳排放占各区域碳成本总量的比例仅为10%左右.退耕还林工程的实施在工程边界内外共产生温室气体50.62 Tg C,抵消了工程固碳效益的19.9%;在西北地区、西南地区、东北地区、华北地区和中南华东地区的抵消作用分别为38.9%、10.4%、26.1%、8.9%和15.5%.退耕还林工程建设期内的净固碳量为203.50 Tg C,年均净固碳量为18.50 Tg C·a-1.碳成本和碳泄漏对退耕还林工程固碳的抵消较小,退耕还林工程在我国温室气体减排和全球气候变暖减缓上做出了巨大贡献.经济林营造采用精准施肥和为退耕还林工程区农户提供可替代的维持生存的方法是分别减少碳成本和碳泄漏的可能措施.  相似文献   

9.
Mitigating or slowing an increase in atmospheric carbon dioxide concentration ([CO2]) has been the focus of international efforts, most apparent with the development of the Kyoto Protocol. Sequestration of carbon (C) in agricultural soils is being advocated as a method to assist in meeting the demands of an international C credit system. The conversion of conventionally tilled agricultural lands to no till is widely accepted as having a large-scale sequestration potential. In this study, C flux measurements over a no-till corn/soybean agricultural ecosystem over 6 years were coupled with estimates of C release associated with agricultural practices to assess the net biome productivity (NBP) of this no-till ecosystem. Estimates of NBP were also calculated for the conventionally tilled corn/soybean ecosystem assuming net ecosystem exchange is C neutral. These measurements were scaled to the US as a whole to determine the sequestration potential of corn/soybean ecosystems, under current practices where 10% of agricultural land devoted to this ecosystem is no-tilled and under a hypothetical scenario where 100% of the land is not tilled. The estimates of this analysis show that current corn/soybean agriculture in the US releases ∼7.2 Tg C annually, with no-till sequestering ∼2.2 Tg and conventional-till releasing ∼9.4 Tg. The complete conversion of land area to no till might result in 21.7 Tg C sequestered annually, representing a net C flux difference of ∼29 Tg C. These results demonstrate that large-scale conversion to no-till practices, at least for the corn/soybean ecosystem, could potentially offset ca. 2% of annual US carbon emissions.  相似文献   

10.
We use Landsat TM time series data for the years of 1991/1992, 1995/1996 and1999/2000 to characterize land-cover change in northeast China. With the information onland-cover change and the density of vegetation and soil carbon, we assess the potential effect of land-cover change on vegetation and soil carbon in this region. Our results show a large decrease of 2.76×10~4km~2 in forest area and a rapid increase of 2.32×10~4km~2 in urban area. Land-cover changes in northeast China have resulted in a potential maximum loss of 273.2 Tg C for the period of 1991-2000, with a net loss of 95.7 Tg C in vegetation and 177.5Tg C in soil. The conversionof forests into other land-cover types could have potentially resulted in a loss of 254.6 Tg C for thestudy period, accounting for 68.8% of the total potential carbon loss in the northeast China. To quantify the net effect of land-cover change on carbon storage will require accounting for vegeta-tion regrowth and soil processes. Our results also imply that forest protection and reforestation are of critical importance to carbon sequestration in China.  相似文献   

11.
Using a slightly modified IPCC method, we examined changes in annual fluxes of CO2 and contributions of energy consumption, limestone use, waste combustion, land-use change, and forest growth to the fluxes in South Korea from 1990 to 1997. Our method required less data and resulted in a larger estimate of CO2 released by industrial processes, comparing with the original IPCC guideline. However, net CO2 emission is not substantially different from the estimates of IPCC and modified methods. Net CO2 emission is intimately related to GDP as Korean economy has heavily relied on energy consumption and industrial activities, which are major sources of CO2. Total efflux of CO2 was estimated to be 63.6 Tg C/a in 1990 and amounted to 112.9 Tg C/a in 1997. Land-use change contributed to annual budget of CO2 in a relatively small portion. Carbon dioxide was sequestered by forest biomass at the rate of 6.5 Tg C/a in 1990 and 8.5 Tg C/a in 1997. Although CO2 storage in the forests increased, the sink effect was overwhelmed by extensive energy consumption, suggesting that energy-saving strategies will be more effective in reducing CO2 emission in Korea than any other practices. It is presumed that plant uptake of CO2 is underestimated as carbon contained in plant detritus and belowground living biomass were not fully considered. Furthermore, the soil organic carbon stored in forest decomposes in various ways in rugged mountains depending on their conditions, such as slope, aspect and elevation, which could have an effect on decomposition rate and carbon stores in soils. Thus, carbon sequestration of forests deserves further attention.  相似文献   

12.
We use Landsat TM time series data for the years of 1991/1992, 1995/1996 and 1999/2000 to characterize land-cover change in northeast China. With the information on land-cover change and the density of vegetation and soil carbon, we assess the potential effect of land-cover change on vegetation and soil carbon in this region. Our results show a large decrease of 2.76(104km2 in forest area and a rapid increase of 2.32(104km2 in urban area. Land-cover changes in northeast China have resulted in a potential maximum loss of 273.2 Tg C for the period of 1991-2000, with a net loss of 95.7 Tg C in vegetation and 177.5Tg C in soil. . The conversion of forests into other land-cover types could have potentially resulted in a loss of 254.6 Tg C for the study period, accounting for 68.8% of the total potential carbon loss in the northeast China. To quantify the net effect of land-cover change on carbon storage will require accounting for vegetation regrowth and soil processes. Our results also imply that forest protectionand reforestation are of critical importance to carbon sequestration in China.  相似文献   

13.
2004-2013年山东省森林碳储量及其碳汇经济价值   总被引:3,自引:0,他引:3  
森林作为陆地生态系统的主体,其林分碳储量及其碳汇经济价值的估算是全球碳循环研究的热点和重要内容。基于2004-2008年和2009-2013年山东省森林资源清查数据以及实测样地数据改进的生物量蓄积量转换参数,利用生物量转换因子连续函数法,估算2004-2013年山东省森林碳储量及其碳汇经济价值动态。研究结果表明,2004-2013年山东省森林面积、碳储量和碳密度分别从2004-2008年的156.12×104hm2、34.75Tg C和22.26Mg C/hm2增加到2009-2013年161.44×104hm2、43.98Tg C和27.24Mg C/hm2。人工林是森林面积、碳储量和碳密度增加的主要贡献者,人工林和天然林对森林生物量碳汇的贡献分别为97.3%和2.7%。两次森林清查期间,杨树和硬阔软阔类森林的碳储量之和分别占全省总量的70.2%和69.6%,杨树的碳储量和碳密度增加最为显著。各龄组森林碳储量由大到小依次为:幼龄林 > 中龄林 > 成熟林 > 近熟林 > 过熟林。森林碳汇经济价值从2004-2008年的243.37亿元增长到2009-2013年的253.42亿元,年均增长2.01亿元,杨树的碳汇经济价值占全省所有森林类型的60%,赤松单位面积碳汇经济价值最强为2.08万元/ha。  相似文献   

14.
甘肃省森林碳储量现状与固碳速率   总被引:1,自引:0,他引:1       下载免费PDF全文
针对森林碳平衡再评估的重要性和区域尺度森林生态系统碳库量化分配的不确定性, 该研究依据全国森林资源连续清查结果中甘肃省各森林类型分布的面积与蓄积比重以及林龄和起源等要素, 在甘肃省布设212个样地, 经野外调查与采样、室内分析, 并对典型样地信息按照面积权重进行尺度扩展, 估算了甘肃省森林生态系统碳储量及其分布特征。结果表明: 甘肃省森林生态系统总碳储量为612.43 Tg C, 其中植被生物量碳为179.04 Tg C, 土壤碳为433.39 Tg C。天然林是甘肃省碳储量的主要贡献者, 其值为501.42 Tg C, 是人工林的4.52倍。天然林和人工林的植被碳密度均表现为随林龄的增加而增加的趋势, 同一龄组天然林植被碳密度高于人工林。天然林土壤碳密度从幼龄林到过熟林逐渐增加, 但人工林土壤碳密度最大值主要为近熟林。全省森林植被碳密度均值为72.43 Mg C·hm-2, 天然林和人工林分别为90.52和33.79 Mg C·hm-2。基于森林清查资料和标准样地实测数据, 估算出全省天然林和人工林在1996年的植被碳储量为132.47和12.81 Tg C, 2011年分别为152.41和26.63 Tg C, 平均固碳速率分别为1.33和0.92 Tg C·a-1。甘肃省幼、中龄林面积比重较大, 占全省的62.28%, 根据碳密度随林龄的动态变化特征, 预测这些低龄林将发挥巨大的碳汇潜力。  相似文献   

15.
Vegetation growth models are used with remotely sensed and meteorological data to monitor terrestrial carbon dynamics at a range of spatial and temporal scales. Many of these models are based on a light-use efficiency equation and two-component model of whole-plant growth and maintenance respiration that have been parameterized for distinct vegetation types and biomes. This study was designed to assess the robustness of these parameters for predicting interannual plant growth and carbon exchange, and more specifically to address inconsistencies that may arise during forest disturbances and the loss of canopy foliage. A model based on the MODIS MOD17 algorithm was parameterized for a mature upland hardwood forest by inverting CO2 flux tower observations during years when the canopy was not disturbed. This model was used to make predictions during a year when the canopy was 37% defoliated by forest tent caterpillars. Predictions improved after algorithms were modified to scale for the effects of diffuse radiation and loss of leaf area. Photosynthesis and respiration model parameters were found to be robust at daily and annual time scales regardless of canopy disturbance, and differences between modeled net ecosystem production and tower net ecosystem exchange were only approximately 2 g C m−2 d−1 and less than 23 g C m−2 y−1. Canopy disturbance events such as insect defoliations are common in temperate forests of North America, and failure to account for cyclical outbreaks of forest tent caterpillars in this stand could add an uncertainty of approximately 4–13% in long-term predictions of carbon sequestration.  相似文献   

16.
《植物生态学报》2016,40(4):304
Aims
Carbon sequestration is the basic function and most primary service of forest ecosystems, and plays a vital role in mitigating the global climate change. However, carbon storage and allocation in forest ecosystems have been less studied at regional scales than at forest stand levels, and the results are subject to uncertainty due to inconsistent methodologies. In this study we aim to obtain relatively accurate estimates of forest carbon stocks and sequestration rate at a provincial scale (regional) based on plot surveys of plants and soils.
Methods
In consideration of the areas and distributions of major forest types, 212 sampling plots, covering different age classes and origins (natural forests vs. planted forests), were surveyed in Gansu Province in northern China. Field investigations were conducted for vegetation layers (trees, shrubs, herbs and litter), soil profiles, and sampling of both plant materials and soils for laboratory analyses. Regional carbon stocks were calculated by up-scaling the carbon densities of all forest types with their corresponding areas. Carbon sequestration rate was estimated by referencing the reports of national forest inventory data for different periods.
Important findings Forest carbon stocks at the provincial scale were estimated at 612.43 Tg C, including 179.04 Tg C in biomass and 433.39 Tg C in soil organic materials. Specifically, natural forests stored 501.42 Tg C, approximately 4.52 times than that of the plantations. Biomass carbon density in both natural forests and plantations showed an increasing trend with stand age classes, and was greater in natural forests than in plantations within the same age classes. Soil carbon density also increased with stand age classes in natural forests, but the highest value occurred at the pre-mature stage in plantations. The weighted average of regional biomass carbon density was at 72.43 Mg C·hm-2, with the average value of 90.52 Mg C·hm-2 in natural forests and 33.79 Mg C·hm-2 in plantations, respectively. In 1996, vegetation stored 132.47 Tg C in natural forests and 12.81 Tg C in plantations, respectively, and the values increased to 152.41 and 26.63 Tg C in 2011, with the mean carbon sequestration rates of 1.33 and 0.92 Tg C·a-1. Given that young and middle-aged forests account for a large proportion (62.28%) of the total forest areas, the region is expected to have substantial potential of carbon sequestration.  相似文献   

17.
Using a slightly modified IPCC method, we examined changes in annual fluxes of CO2 and contributions of energy consumption, limestone use, waste combustion, land-use change, and forest growth to the fluxes in South Korea from 1990to 1997. Our method required less data and resulted in a larger estimate of CO2released by industrial processes, comparing with the original IPCC guideline. However, net CO2 emission is not substantially different from the estimates of IPCC and modified methods. Net CO2 emission is intimately related to GDP as Koreaneconomy has heavily relied on energy consumption and industrial activities, which are major sources of CO2. Total efflux of CO2 was estimated to be 63.6 Tg C/ain 1990 and amounted to 112.9 Tg C/a in 1997. Land-use change contributed to annual budget of CO2 in a relatively small portion. Carbon dioxide was sequesteredby forest biomass at the rate of 6.5 Tg C/a in 1990 and 8.5 Tg C/a in 1997. Although CO2 storage in the forests increased, the sink effect was overwhelmed by extensive energy consumption, suggesting that energy-saving strategies will be more effective in reducing CO2 emission in Korea than any other practices. It is presumed that plant uptake of CO2 is underestimated as carbon contained in plant detritus and belowground living biomass were not fully considered. Furthermore, the soil organic carbon stored in forest decomposes in various ways in rugged mountains depending on their conditions, such as slope, aspect and elevation, which could have an effect on decomposition rate and carbon stores in soils. Thus, carbon sequestration of forests deserves further attention.  相似文献   

18.
湖南省森林植被碳储量、碳密度动态特征   总被引:1,自引:0,他引:1  
利用湖南省4次(1983—1987年、1990—1995年、2003—2004年和2009年)森林资源清查数据,采用材积源-生物量法,结合湖南省现有森林植被主要树种碳含量实测数据,研究近20多年来湖南省森林植被碳储量、碳密度的动态特征。结果表明:从1987年到2009年,湖南省乔木林植被碳汇为66.40×106tC,碳密度提高了5.65 tC/hm~2,阔叶林碳汇最大(48.43×10~6tC),其次是杉木林(9.54×10~6tC)和松木林(6.68×10~6tC),各乔木林植被碳密度波动较大;除过熟林外,各龄组乔木林均为碳汇,中龄林碳汇最大,幼龄林、中龄林、近熟林植被碳密度依次提高了4.75、4.09、0.83 tC/hm~2,成熟林、过熟林分别下降了6.87、13.88 tC/hm~2;天然林、人工林植被碳汇分别为41.01×10~6tC、25.39×10~6tC,碳密度分别提高了7.19、4.91 tC/hm~2。湖南省森林植被(包括疏林)碳汇为84.87×10~6tC,乔木林碳汇最大,其次是竹林,分别占湖南省森林植被碳汇的78.24%和33.31%,碳密度提高了6.24 tC/hm~2,各森林类型植被碳储量随其面积变化而变化。表明近20多年来,湖南省乔木林植被单位面积储碳能力明显提高,天然林在湖南省乔木林植被碳储量占有重要地位。  相似文献   

19.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   

20.
为阐明安徽省不同林龄的森林生态系统的碳储量现状, 以及现有自然环境条件下顶极森林生态系统的固碳潜力, 采用野外样地调查和BIOME4模型方法对此进行研究。安徽省森林生态系统的现状总碳储量为714.5 Tg C, 其中植被碳402.1 Tg C、土壤碳312.4 Tg C。从幼龄林至过熟林的生长过程中, 森林生态系统的总碳密度和植被碳密度都呈现增长趋势。但土壤碳密度从幼龄林至近熟林阶段呈增加趋势, 近熟林以后出现减少趋势。安徽省幼龄林和中龄林占森林总面积的75%, 若幼、中龄林发展到近熟林阶段, 将增加125.4 Tg C。BIOME4模拟显示: 当森林发展到气候顶极森林时, 安徽省森林生态系统将增加245.7 Tg C, 即总固碳潜力包括植被固碳153.7 Tg C, 土壤固碳92.0 Tg C。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号