首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim Bark beetle outbreaks have recently affected extensive areas of western North American forests, and factors explaining landscape patterns of tree mortality are poorly understood. The objective of this study was to determine the relative importance of stand structure, topography, soil characteristics, landscape context (the characteristics of the landscape surrounding the focal stand) and beetle pressure (the abundance of local beetle population eruptions around the focal stand a few years before the outbreak) to explain landscape patterns of tree mortality during outbreaks of three species: the mountain pine beetle, which attacks lodgepole pine and whitebark pine; the spruce beetle, which feeds on Engelmann spruce; and the Douglas‐fir beetle, which attacks Douglas‐fir. A second objective was to identify common variables that explain tree mortality among beetle–tree host pairings during outbreaks. Location Greater Yellowstone ecosystem, Wyoming, USA. Methods We used field surveys to quantify stand structure, soil characteristics and topography at the plot level in susceptible stands of each forest type showing different severities of infestation (0–98% mortality; n= 129 plots). We then used forest cover and beetle infestation maps derived from remote sensing to develop landscape context and beetle pressure metrics at different spatial scales. Plot‐level and landscape‐level variables were used to explain outbreak severity. Results Engelmann spruce and Douglas‐fir mortality were best predicted using landscape‐level variables alone. Lodgepole pine mortality was best predicted by both landscape‐level and plot‐level variables. Whitebark pine mortality was best – although poorly – predicted by plot‐level variables. Models including landscape context and beetle pressure were much better at predicting outbreak severity than models that only included plot‐level measures, except for whitebark pine. Main conclusions Landscape‐level variables, particularly beetle pressure, were the most consistent predictors of subsequent outbreak severity within susceptible stands of all four host species. These results may help forest managers identify vulnerable locations during ongoing outbreaks.  相似文献   

2.
川西亚高山不同年龄紫果云杉径向生长对气候因子的响应   总被引:1,自引:0,他引:1  
运用树木年轮气候学的基本方法,建立王朗自然保护区紫果云杉在集中分布上限区域的年轮宽度年表,选取差值年表分析不同年龄云杉的径向生长同逐月气候因子的相关及响应关系,结果显示:幼龄组云杉年表的敏感度高于中龄组和老龄组云杉,幼龄组云杉对生长季前及生长季的气温状况显著正相关;中龄组云杉年表仅与当年4月份和7月份的月平均最低气温显著正相关;老龄组云杉的年轮宽度指数同上年生长季(上年8月份)的月平均气温和月平均最低温显著负相关,上年生长季高温的"滞后效应"在老龄组云杉体现的更为突出;幼龄组与中龄组云杉对当年6月份降水持续增加显示出明显的负相关关系,上年12月份的降水会对幼龄组和老龄组云杉径向生长不利。研究表明幼龄组云杉包含的气候信息要优于中龄组和老龄组云杉,在该区域进行相关研究时应根据研究需要选取不同年龄跨度的云杉年表。  相似文献   

3.
In recent decades we have seen rapid and co‐occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi‐annual landscape‐wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co‐occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed‐species and age‐heterogeneous forests with good site‐matching tend to be less susceptible to large‐scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and precipitation variability increases, and that mitigating forestry practices should be adopted as soon as possible considering the time lags involved.  相似文献   

4.
Biotic disturbance agents such as insects can be highly responsive to climatic change and have widespread ecological and economic impacts on forests. Quantifying the responses of introduced and native insects to climate, including how dynamics of one agent may mediate those of another, is important for forecasting disturbance and associated impacts on forest structure and function. We investigated drivers of outbreaks by larch casebearer Coleophora laricella, an invasive defoliator, and eastern larch beetle Dendroctonus simplex, a native, tree‐killing bark beetle, on tamarack Larix laricina from 2000 to in Minnesota, USA. We evaluated the utility of temporal, spatial and climatic variables in predicting the presence/absence of outbreaks of each insect in cells of rasterized aerial survey data. The role of defoliation by larch casebearer in outbreaks of eastern larch beetle was also investigated. For both species, the most important predictors of outbreak occurrence were proximity of conspecific outbreaks in space and time. For larch casebearer, outbreak occurrence was positively associated with spring precipitation and warmer growing seasons. Outbreak occurrence of eastern larch beetle was positively associated with warmer and dryer years and was more likely in cells with prior defoliation by larch casebearer. Our results demonstrate that climate can drive large scale outbreaks of introduced and non‐native disturbance agents on a single host species, and that interactions at the tree level between such agents may scale up to manifest across large temporal and spatial scales.  相似文献   

5.
Climate change has amplified eruptive bark beetle outbreaks over recent decades, including spruce beetle (Dendroctonus rufipennis). However, for projecting future bark beetle dynamics there is a critical lack of evidence to differentiate how outbreaks have been promoted by direct effects of warmer temperatures on beetle life cycles versus indirect effects of drought on host susceptibility. To diagnose whether drought‐induced host‐weakening was important to beetle attack success we used an iso‐demographic approach in Engelmann spruce (Picea engelmannii) forests that experienced widespread mortality caused by spruce beetle outbreaks in the 1990s, during a prolonged drought across the central and southern Rocky Mountain region. We determined tree death date demography during this outbreak to differentiate early‐ and late‐dying trees in stands distributed across a landscape within this larger regional mortality event. To directly test for a role of drought stress during outbreak initiation we determined whether early‐dying trees had greater sensitivity of tree‐ring carbon isotope discrimination (?13C) to drought compared to late‐dying trees. Rather, evidence indicated the abundance and size of host trees may have modified ?13C responses to drought. ?13C sensitivity to drought did not differ among early‐ versus late‐dying trees, which runs contrary to previously proposed links between spruce beetle outbreaks and drought. Overall, our results provide strong support for the view that irruptive spruce beetle outbreaks across North America have primarily been driven by warming‐amplified beetle life cycles whereas drought‐weakened host defenses appear to have been a distant secondary driver of these major disturbance events.  相似文献   

6.
Tree ring width (TRW), maximum (MXD), mean (MED) and minimum (MID) wood density were investigated in samples from the vicinity of the Tuchola Forest Biosphere Reserve (Northern Poland) in an attempt to distinguish the relative importance of climate and insect attack on the growth of Norway spruce. Selected climate parameters were used for a multiple regression to predict tree-ring width during insect outbreaks. This also used AICc for model selection. Additionally, k-means clustering was then used to group the yearly data of TRW, MXD, MID and the data of insect outbreaks. The respective climate data and data on insect outbreaks during the years 1962–1996 revealed a strong influence of May precipitation on TRW and insect outbreaks on MID. Missing tree rings or narrow rings and lower MXD together with higher MID might indicate increased insect activity.  相似文献   

7.
To identify general patterns in the effects of climate change on the outbreak dynamics of forest‐defoliating insect species, we examined a 212‐year record (1800–2011) of outbreaks of five pine‐defoliating species (Bupalus piniarius, Panolis flammea, Lymantria monacha, Dendrolimus pini, and Diprion pini) in Bavaria, Germany for the evidence of climate‐driven changes in the severity, cyclicity, and frequency of outbreaks. We also accounted for historical changes in forestry practices and examined effects of past insecticide use to suppress outbreaks. Analysis of relationships between severity or occurrence of outbreaks and detrended measures of temperature and precipitation revealed a mixture of positive and negative relationships between temperature and outbreak activity. Two moth species (P. flammea and Dendrolimus pini) exhibited lower outbreak activity following years or decades of unusually warm temperatures, whereas a sawfly (Diprion pini), for which voltinism is influenced by temperature, displayed increased outbreak occurrence in years of high summer temperatures. We detected only one apparent effect of precipitation, which showed Dendrolimus pini outbreaks tending to follow drought. Wavelet analysis of outbreak time series suggested climate change may be associated with collapse of L. monacha and Dendrolimus pini outbreak cycles (loss of cyclicity and discontinuation of outbreaks, respectively), but high‐frequency cycles for B. piniarius and P. flammea in the late 1900s. Regional outbreak severity was generally not related to past suppression efforts (area treated with insecticides). Recent shifts in forestry practices affecting tree species composition roughly coincided with high‐frequency outbreak cycles in B. piniarius and P. flammea but are unlikely to explain the detected relationships between climate and outbreak severity or collapses of outbreak cycles. Our results highlight both individualistic responses of different pine‐defoliating species to climate changes and some patterns that are consistent across defoliator species in this and other forest systems, including collapsing of population cycles.  相似文献   

8.
Mountain pine beetle outbreaks are responsible for widespread tree mortality in pine forests throughout western North America. Intensive outbreaks result in significant economic loss to the timber industry and massive changes to the forest habitat. Because of the time and space scales involved in a beetle outbreak, mathematical models are needed to study the evolution of an outbreak. In this paper we present a partial differential equation model of the flight phase of the mountain pine beetle which includes chemotactic responses and tree defense. We present a numerical method for integrating this model and use this method to investigate the relationship between emergence rate, forest demographic and patterns of beetle attack. In particular we look at how emergence rate affects the beetles' ability to successfully attack strong trees, which may be an indicator of an epidemic outbreak.  相似文献   

9.
Climate-driven increases in wildfires, drought conditions, and insect outbreaks are critical threats to forest carbon stores. In particular, bark beetles are important disturbance agents although their long-term interactions with future climate change are poorly understood. Droughts and the associated moisture deficit contribute to the onset of bark beetle outbreaks although outbreak extent and severity is dependent upon the density of host trees, wildfire, and forest management. Our objective was to estimate the effects of climate change and bark beetle outbreaks on ecosystem carbon dynamics over the next century in a western US forest. Specifically, we hypothesized that (a) bark beetle outbreaks under climate change would reduce net ecosystem carbon balance (NECB) and increase uncertainty and (b) these effects could be ameliorated by fuels management. We also examined the specific tree species dynamics—competition and release—that determined NECB response to bark beetle outbreaks. Our study area was the Lake Tahoe Basin (LTB), CA and NV, USA, an area of diverse forest types encompassing steep elevation and climatic gradients and representative of mixed-conifer forests throughout the western United States. We simulated climate change, bark beetles, wildfire, and fuels management using a landscape-scale stochastic model of disturbance and succession. We simulated the period 2010–2100 using downscaled climate projections. Recurring droughts generated conditions conducive to large-scale outbreaks; the resulting large and sustained outbreaks significantly increased the probability of LTB forests becoming C sources over decadal time scales, with slower-than-anticipated landscape-scale recovery. Tree species composition was substantially altered with a reduction in functional redundancy and productivity. Results indicate heightened uncertainty due to the synergistic influences of climate change and interacting disturbances. Our results further indicate that current fuel management practices will not be effective at reducing landscape-scale outbreak mortality. Our results provide critical insights into the interaction of drivers (bark beetles, wildfire, fuel management) that increase the risk of C loss and shifting community composition if bark beetle outbreaks become more frequent.  相似文献   

10.
Landscape‐level forest management has long been hypothesized to affect forest insect outbreak dynamics, but empirical evidence remains elusive. We hypothesized that the combination of increased hardwood relative to host tree species, prevalence of younger forests, and fragmentation of those forests due to forest harvesting legacies would reduce outbreak intensity, increase outbreak frequency, and decrease spatial synchrony in spruce budworm Choristoneura fumiferana outbreaks. We investigated these hypotheses using tree ring samples collected across 51 sites pooled into 16 subareas distributed across a large ecoregion spanning the international border between Ontario (Canada), and Minnesota (USA). This ecoregion contains contrasting land management zones with clear differences in forest landscape structure (i.e. forest composition and spatial configuration) while minimizing the confounding influence of climate. Cluster analyses of the 76‐yr time‐series generally grouped by subareas found within the same land management zone. Spatial nonparametric covariance analysis indicated that the highest and lowest degree of spatial synchrony of spruce budworm outbreaks were found within unmanaged wilderness and lands managed at fine spatial scales in Minnesota, respectively. Using multivariate analysis, we also found that forest composition, configuration, and climate together accounted for a total of 40% of the variance in outbreak chronologies, with a high level of shared variance between composition and configuration (13%) and between composition and climate (9%). At the scale of our study, climate on its own did not explain any of the spatial variation in outbreaks. Outbreaks were of higher frequency, lower intensity, and less spatially synchronized in more fragmented, younger forests with a lower proportion of host species, with opposing outbreak characteristics observed in regions characterised by older forests with more concentrated host species. Our study is the first quantitative evaluation of the long‐standing ‘silvicultural hypothesis’ of spruce budworm management specifically conducted at a spatio‐temporal scale for which it was intended.  相似文献   

11.
  1. A warming climate, as predicted under current climate change projections, is likely to influence the population dynamics of many forest insect species. Numerous bark beetle species in both Europe and North America have already responded to a warming climate by significantly expanding their geographical ranges.
  2. The aim of the current study was to investigate how populations of bark beetles within stands of Sitka spruce, a widely planted non-native commercial plantation tree species in the U.K., were likely to respond to a warming climate. Experimental plots were established in stands of Sitka spruce over elevational gradients in two commercial forest plantations, and the abundance and emergence times of key bark beetle species were assessed over a 3-year period using flight interception traps. The air temperature difference between the lowest and highest experimental plot in each forest was consistently >1°C throughout the 3-year period.
  3. In general, the abundance of the most dominant bark beetle species (e.g. Trypodendron, Dryocoetes, Hylastes spp.) was higher, and emergence times tended to be earlier in the year at the lower elevation plots, where temperatures were higher, although not all bark beetle species responded in the same manner.
  4. The results of the study indicated that, under the projected future climate warming scenarios, monoculture Sitka spruce stands at low elevations may potentially be more vulnerable to significant outbreak events from existing or invasive bark beetle species. Hence, consideration of establishing more resilient forests of Sitka spruce by diversifying the species composition and structure of Sitka spruce stands is discussed.
  相似文献   

12.
Aim Tree‐line conifers are believed to be limited by temperature worldwide, and thus may serve as important indicators of climate change. The purpose of this study was to examine the potential shifts in spatial distribution of three tree‐line conifer species in the Greater Yellowstone Ecosystem under three future climate‐change scenarios and to assess their potential sensitivity to changes in both temperature and precipitation. Location This study was performed using data from 275 sites within the boundaries of Yellowstone and Grand Teton national parks, primarily located in Wyoming, USA. Methods We used data on tree‐line conifer presence from the US Forest Service Forest Inventory and Analysis Program. Climatic and edaphic variables were derived from spatially interpolated maps and approximated for each of the sites. We used the random‐forest prediction method to build a model of predicted current and future distributions of each of the species under various climate‐change scenarios. Results We had good success in predicting the distribution of tree‐line conifer species currently and under future climate scenarios. Temperature and temperature‐related variables appeared to be most influential in the distribution of whitebark pine (Pinus albicaulis), whereas precipitation and soil variables dominated the models for subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii). The model for whitebark pine substantially overpredicted absences (as compared with the other models), which is probably a result of the importance of biological factors in the distribution of this species. Main conclusions These models demonstrate the complex response of conifer distributions to changing climate scenarios. Whitebark pine is considered a ‘keystone’ species in the subalpine forests of western North America; however, it is believed to be nearly extinct throughout a substantial portion of its range owing to the combined effects of an introduced pathogen, outbreaks of the native mountain pine beetle (Dendroctonus ponderosae), and changing fire regimes. Given predicted changes in climate, it is reasonable to predict an overall decrease in pine‐dominated subalpine forests in the Greater Yellowstone Ecosystem. In order to manage these forests effectively with respect to future climate, it may be important to focus attention on monitoring dry mid‐ and high‐elevation forests as harbingers of long‐term change.  相似文献   

13.
伊春地区红松和红皮云杉径向生长对气候变化的响应   总被引:1,自引:0,他引:1  
树木生长-气候关系对准确评估气候变化对森林生态系统影响、预测森林生产力与植被动态及揭示树木对气候变化的响适应策略至关重要。在全球变暖背景下,升温可能会对树木的生长产生影响,从而改变区域森林生态系统的生产力或碳储量。本研究利用生长-气候响应函数、滑动相关分析等树木年轮学方法,探讨伊春地区阔叶红松林内红松和红皮云杉径向生长的主要限制因子及两者径向生长对快速升温(1980年后)响应的异同。结果表明:1980年前红松径向生长有明显加速的趋势,红皮云杉上升趋势较弱;而1980年后红松径向生长趋势显著下降,红皮云杉则下降不明显。红皮云杉径向生长与上一年9月及当年6月平均气温显著负相关,而红松径向生长与上一年12月及当年1月、4月和6月最低气温显著正相关。1980年快速升温后,高温对两树种生长的抑制作用增强,尤其是红松。生长季末(9月)降水对红松和红皮云杉的限制作用由升温前的负相关转变为升温后的显著正相关。温度是限制红松和红皮云杉径向生长的主要气候因子,降水影响相对较弱;其中红松径向生长对气候变化的响应比红皮云杉更敏感。快速升温后,红松和红皮云杉生长-气候关系的变化可能与升温导致的暖干旱化有关。若气...  相似文献   

14.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

15.
The characteristics of spruce individuals, which survived a massive bark beetle outbreak, were compared with the characteristics of neighbouring attacked trees in Šumava National Park (Czech Republic). Selected parameters related to crown geometry, stand conditions and distances between trees were measured or estimated. Significant differences were found between the surviving trees and the neighbouring trees attacked by I. typographus. Trees with a higher level of stem shading (longer crown length) tended to survive. The attacked trees were usually located in areas with larger basal area, especially southwards from them. A shorter distance to a previously attacked tree increased the probability of additional attack. Spruce trees with more progressive crown structure transformation (primary structure defoliation) were significantly more frequently attacked by spruce bark beetle. Superior and taller trees had a clearly longer life expectancy than dominant ones. These results show that the attack of trees by bark beetle can be predicted to a certain degree, which can be used in management of endangered spruce forests.  相似文献   

16.
Growth/climate response shift in a long subalpine spruce chronology   总被引:10,自引:3,他引:7  
A new Norway spruce (Picea abies (L.) Karst.) tree-ring width chronology based on living and historic wood spanning the AD 1108–2003 period is developed. This composite record combines 208 high elevation samples from 3 Swiss subalpine valleys, i.e., Lötschental, Goms, and Engadine. To retain potential high- to low-frequency information in this dataset, individual spline detrending and the regional curve standardization are applied. For comparison, 22 high elevation and 6 low-elevation instrumental station records covering the greater Alpine area are used. Previous year August–September precipitation and current year May–July temperatures control spruce ring width back to ~1930. Decreasing (increasing) moving correlations with monthly mean temperatures (precipitation) indicate instable growth/climate response during the 1760–2002 period. Crucial June–August temperatures before ~1900 shift towards May-July temperature plus August precipitation sensitivity after ~1900. Numerous of comparable subalpine spruce chronologies confirm increased late-summer drought stress, coincidently with the recent warming trend. Comparison with regional-, and large-scale millennial-long temperature reconstructions reveal significant similarities prior to ~1900 (1300–1900 mean r=0.51); however, this study does not fully capture the commonly reported 20th century warming (1900–1980 mean r=?0.17). Due to instable growth/climate response of the new spruce chronology, further dendroclimatic reconstruction is not performed.  相似文献   

17.
Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.  相似文献   

18.
Mountain pine beetle (Dendroctonus ponderosae) outbreaks in western North American coniferous forests are increasing in size and severity. An understanding of wildlife population responses to pine beetle outbreaks is needed to inform habitat conservation strategies. We monitored 355 nests of 5 woodpecker species during 2 sampling periods, before (2003–2006) and after (2009–2014) the peak of a pine beetle outbreak in dry mixed conifer forest of Montana, USA. Three of 5 woodpecker species represented the beetle-foraging group: American three-toed (Picoides dorsalis), hairy (Dryobates villosus), and downy (D. pubescens) woodpeckers. The other 2 species studied were northern flicker (Colaptes auratus), a foraging and habitat generalist, and red-naped sapsucker (Sphyrapicus nuchalis), a sap forager and bark-gleaning insectivore. We analyzed daily survival rate of nests in relation to pine beetle outbreak (445,000 ha) severity and timing, along with covariates unrelated to the outbreak (temp, nest height, and nest tree diameter). Our results provided stronger evidence for relationships between woodpecker nest survival and the non-outbreak variables than those associated with outbreaks. Our results indicated limited support for nest survival relationships with beetle severity (annual and cumulative pine tree mortality at 0.81-ha and 314-ha scales). Nevertheless, we observed a significant increase in densities of hatched nests for beetle-foraging woodpeckers following the outbreak. Our results suggest that woodpeckers, particularly beetle foragers, respond numerically to pine beetle outbreaks through increased nesting densities more so than functionally via nest survival. © 2019 The Authors. Journal of Wildlife Management Published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

19.
In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from ~5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.  相似文献   

20.
Larch budmoth (LBM, Zeiraphera diniana Gn.) outbreaks cause discernable physical alteration of cell growth in tree rings of host subalpine larch (Larix decidua Mill.) in the European Alps. However, it is not clear if these outbreaks also impact isotopic signatures in tree-ring cellulose, thereby masking climatic signals. We compared LBM outbreak events in stable carbon and oxygen isotope chronologies of larch and their corresponding tree-ring widths from two high-elevation sites (1800–2200 m a.s.l.) in the Swiss Alps for the period AD 1900–2004 against isotope data obtained from non-host spruce (Picea abies). At each site, two age classes of tree individuals (150–250 and 450–550 years old) were sampled. Inclusion of the latter age class enabled one chronology to be extended back to AD 1650, and a comparison with long-term monthly resolved temperature data. Within the constraints of this local study, we found that: (1) isotopic ratios in tree rings of larch provide a strong and consistent climatic signal of temperature; (2) at all sites the isotope signatures were not disturbed by LBM outbreaks, as shown, for example, by exceptionally high significant correlations between non-host spruce and host larch chronologies; (3) below-average July to August temperatures and LBM defoliation events have been coupled for more than three centuries. Dampening of Alps-wide LBM cyclicity since the 1980s and the coincidence of recently absent cool summers in the European Alps reinforce the assumption of a strong coherence between summer temperatures and LBM defoliation events. Our results demonstrate that stable isotopes in tree-ring cellulose of larch are an excellent climate proxy enabling the analysis of climate-driven changes of LBM cycles in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号