首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginine is a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The competition between iNOS and arginase for arginine contributes to the outcome of several parasitic and bacterial infections. Salmonella infection in macrophage cell line RAW264.7 induces iNOS. Because the availability of l-arginine is a major determinant for nitric oxide (NO) synthesis, we hypothesize that in the Salmonella infected macrophages NO production may be regulated by arginase. Here we report for the first time that Salmonella up-regulates arginase II but not arginase I isoform in RAW264.7 macrophages. Blocking arginase increases the substrate l-arginine availability to iNOS for production of more nitric oxide and perhaps peroxynitrite molecules in the infected cells allowing better killing of virulent Salmonella in a NO dependent manner. RAW264.7 macrophages treated with iNOS inhibitor Aminoguanidine reverts the attenuation in arginase-blocked condition. Further, the NO block created by Salmonella was removed by increasing concentration of l-arginine. The whole-mice system arginase I, although constitutive, is much more abundant than the inducible arginase II isoform. Inhibition of arginase activity in mice during the course of Salmonella infection reduces the bacterial burden and delays the disease outcome in a NO dependent manner.  相似文献   

2.
Nitric oxide (NO) can stimulate dendritic cells to a more activated state. However, nitric oxide and peroxynitrites production by dendritic cells has been usually associated with pathological situations such as autoimmunity or inflammatory diseases. This study was designed to determine if dendritic cells obtained from healthy volunteers produce nitric oxide and peroxynitrites, which results in protein nitration. The expression of arginase II, but not arginase I, isoform was detected in monocytes and dendritic cells. There was higher inducible nitric oxide synthase (iNOS) protein expression and lower arginase activity both in immature and mature dendritic cells, compared to monocytes. This caused nitric oxide production, and maturation of dendritic cells which provoked a significative increase of nitrites and nitrates compared to immature dendritic cells. There was also peroxynitrites synthesis during monocyte differentiation as shown by the nitration of proteins. Immunoblot revealed a pattern of nitrated proteins in cell extracts obtained from monocytes and dendritic cells, however there were bands that appeared only in human dendritic cells, in particular an intense 90 kDa band. Nitric oxide production and nitrotyrosine formation could affect the antigen presentation and modify the immune response.  相似文献   

3.
Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.  相似文献   

4.
Nitric oxide (NO) production was increased in macrophages during inflammation. Casein-elicitation of rodents causing a peritoneal inflammation offered a good model to study alterations in the metabolism of L-arginine, the precursor of NO synthesis. The utilization of L-arginine for NO production, arginase pathway and protein synthesis were studied by radioactive labeling and chromatographic separation. The expression of NO synthase and arginase was studied by Western blotting.Rat macrophages utilized more arginine than mouse macrophages (228+/-27 versus 71+/-12.8pmol per 10(6) macrophages). Arginine incorporation into proteins was low in both species (<15% of labeling). When NO synthesis was blocked, arginine was utilized at a lower general rate, but L-ornithine formation did not increase. The expression of enzymes utilizing arginine increased. NO production was raised mainly in rats (1162+/-84pmol citrulline per 10(6) cells) while in mice both arginase and NO synthase were active in elicited macrophages (677+/-85pmol ornithine and 456+/-48pmol citrulline per 10(6) cells).We concluded, that inflammation induced enhanced L-arginine utilization in rodent macrophages. The expressions and the activities of arginase and NO synthase as well as NO formation were increased in elicited macrophages. Specific blocking of NO synthesis did not result in the enhanced effectivity of the arginase pathway, rather was manifested in a general lower rate of arginine utilization. Different rodent species reacted differently to inflammation: in rats, high NO increase was found exclusively, while in mice the activation of the arginase pathway was also important.  相似文献   

5.
Total saponin of heat-processed ginseng (TSHG) stimulated the production of nitric oxide (NO) in interferon-gamma (IFN-gamma)-primed macrophages through the increased expression of inducible nitric oxide synthase (iNOS). However, TSHG by itself had a very weak effect on the NO synthesis without IFN-gamma priming. The saponins of white ginseng inhibited the NO production in lipopolysaccharide (LPS)/IFN-gamma activated macrophages rather than the stimulation of NO production found in IFN-gamma primed macrophages. The NO production by TSHG-stimulated macrophages was inhibited by the NOS inhibitor (N(G)-monomethyl-L-arginine (L-NMMA)) and nuclear factor-kappaB inhibitor (pyrrolidine dithiocarbamate (PDTC)). TSHG showed different serum-dependence from LPS on the activation of IFN-gamma primed macrophages. This property of TSHG may explain the intensified anti-tumor properties of heat-processed ginseng through its immunostimulating activity.  相似文献   

6.
It has been demonstrated that the lowest intakes of manganese (Mn) were associated with more than a fivefold increased risk of bronchial reactivity. It was also known that nitric oxide (NO) production was found to be significantly higher in asthmatics. There is a reciprocal pathway between arginase and nitric oxide synthase (NOS) for NO production, and Mn is required for arginase activity and stability. We investigated plasma NO, arginase, and its cofactor Mn levels to evaluate this reciprocal pathway in patients with childhood asthma. Arginase activities and Mn and NO levels were measured in plasma from 31 patients with childhood asthma and 22 healthy control subjects. Plasma arginase activities and Mn concentrations were found to be significantly lower and NO levels were significantly higher found to be significantly lower and NO levels were significantly higher in patients with childhood asthma as compared to the control subjects. There was a significantly positive correlation between plasma Mn and arginase and negative correlations between arginase and NO values and Mn and NO values in patients with childhood asthma. These data indicate that the lower concentration of Mn could cause lower arginase activity and this could also upregulate NO production by increasingl-arginine content in patients with childhood asthma.  相似文献   

7.
8.
Regulation of nitric oxide production by arginine metabolic enzymes   总被引:15,自引:0,他引:15  
Nitric oxide (NO) is synthesized from arginine by NO synthase (NOS), and the availability of arginine is one of the rate-limiting factors in cellular NO production. Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (AS) and argininosuccinate lyase (AL), forming the citrulline-NO cycle. AS and sometimes AL have been shown to be coinduced with inducible NOS (iNOS) in various cell types including activated macrophages, vascular smooth muscle cells, glial cells, neuronal PC12 cells, and pancreatic beta-cells. Cationic amino acid transporter (CAT)-2 is induced in activated macrophages but not in PC12 cells. On the other hand, arginase can downregulate NO production by decreasing intracellular arginine concentrations. iNOS and arginase activities are regulated reciprocally in macrophages by cytokines, and this may guarantee the efficient production of NO. In contrast, iNOS and arginase isoforms (type I and II) are coinduced in lipopolysaccharide (LPS)-activated macrophages. These results indicate that NO production is modulated by the uptake, recycling, and degradation of arginine.  相似文献   

9.
The report deals with the induction of the inducible form of nitric oxide synthase (iNOS) in infarcted heart muscle of rabbit and man. In the rabbit, nitric oxide synthase was significantly increased in the infarcted area beginning on the third day following ligation of a coronary artery. iNOS induction occured primarily in macrophages. In man, iNOS immunoreactivity was also primarily localized in macrophages on the seventh day following death from myocardial infarction. Of the specific inhibitors of iNOS in infarcted heart muscle, S-methylisothiourea (SMT) was the most potent. Its greatest effect occured in the normal non-affected area of the heart. Dexamethasone and cyclosporin A failed to inhibit NOS. Apoptosis of macrophages commenced two days following ligation of a coronary artery.  相似文献   

10.

Background

Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS)-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC) nerve stimulation.

Methods

Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM). Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine.

Results

EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P < 0.01 all). In contrast, the arginase inhibitor nor-NOHA increased EFS-induced relaxation by 3.3 ± 1.2-fold at 0.5 Hz to 1.2 ± 0.1-fold at 4 Hz (P < 0.05 all), which was reversed by L-NNA to the level of control airways in the presence of L-NNA (P < 0.01 all). Similar to nor-NOHA, exogenous L-arginine increased EFS-induced airway relaxation (P < 0.05 all).

Conclusion

The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.  相似文献   

11.
Using mouse peritoneal macrophages, we have examined the mechanism by which Leonurus sibiricus (LS) regulates nitric oxide (NO) production. When LS was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production; however, LS by itself had no effect on NO production. The increased production of NO from rIFN-gamma plus LS-stimulated cells was almost completely inhibited by pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappaB. Furthermore, treatment of peritoneal macrophages with rIFN-gamma plus LS caused a significant increase in tumor necrosis factor-alpha (TNF-alpha) production. PDTC also decreased the effect of LS on TNF-alpha production significantly. Because NO and TNF-alpha play an important role in immune function and host defense, LS treatment could modulate several aspects of host defense mechanisms as a result of stimulation of the inducible nitric oxide synthase.  相似文献   

12.
1. The de novo synthesis of arginase was much higher in murine than in rat peritoneal macrophages. This process was inhibited irreversibly by protein synthesis inhibitors and reversibly by glycolysis blockers. 2. Rat macrophages produce more nitric oxide (NO) than murine cells. NO production was inhibited by the inhibitors of protein synthesis or glycolysis. 3. The loading of macrophages by exogenous arginine for 24 hr in vitro resulted in the increase of arginase and nitrite in macrophages to different extents. 4. No great differences in lysozyme production was observed. 5. The proportion of arginine taken up and incorporated is contrasted in murine and rat macrophages.  相似文献   

13.
L-Arginine (L-arg) is metabolized to nitric oxide (NO) by inducible NO synthase (iNOS) or to urea and L-ornithine (L-orn) by arginase. NO is involved in the inflammatory response, whereas arginase is the first step in polyamine and proline synthesis necessary for tissue repair and wound healing. Mitogen-activated protein kinases (MAPK) mediate LPS-induced iNOS expression, and MAPK phosphatase-1 (MKP-1) plays a crucial role in limiting MAPK signaling in macrophages. We hypothesized that MKP-1, by attenuating iNOS expression, acts as a switch changing L-arg metabolism from NO production to L-orn production after endotoxin administration. To test this hypothesis, we performed studies in RAW264.7 macrophages stably transfected with an MKP-1 expression vector in thioglyollate-elicited peritoneal macrophages harvested from wild-type and Mkp-1–/– mice, as well as in vivo in wild-type and Mkp-1–/– mice. We found that overexpression of MKP-1 resulted in lower iNOS expression and NO production but greater urea production in response to LPS. Although deficiency of MKP-1 resulted in greater iNOS expression and NO production and lower urea production in response to LPS, neither the overexpression nor the deficiency of MKP-1 had any substantial effect on the expression of the arginases. lung injury; macrophage; ornithine; mitogen-activated protein kinases  相似文献   

14.
15.
The possible effects of ultra-wideband (UWB) pulses on cellular nitric oxide production were tested by measuring nitrite in the medium bathing UWB exposed RAW 264.7 macrophages. A 30 min exposure to 1 ns UWB pulses, repeated at 600 Hz with an estimated SAR of 0.106 W/kg, did not change nitric oxide production by RAW 264.7 cells, with or without stimulation by gamma interferon and lipopolysaccharide. However, when nitrate was added to the medium of stimulated cells, nitric oxide production increased after UWB exposure, indicating a possible action of UWB pulses on induced nitric oxide synthase under certain conditions.  相似文献   

16.
Salmonella infection is associated with the increased expression of inducible nitric oxide synthase in macrophages and other cells. This review summarizes current knowledge of the molecular mechanisms involved in the induction process, and discusses the functional significance of nitric oxide production in the context of host defense against Salmonella.  相似文献   

17.
The cytokines IL-4 and IL-13 inhibit the production of NO from activated macrophages through an unresolved molecular mechanism. We show here that IL-4 and IL-13 regulate NO production through depletion of arginine, the substrate of inducible NO synthase (iNOS). Inhibition of NO production from murine macrophages stimulated with LPS and IFN-gamma by IL-4 or IL-13 was dependent on Stat6, cell density in the cultures, and pretreatment for at least 6 h. IL-4/IL-13 did not interfere with the expression or activity of iNOS but up-regulated arginase I (the liver isoform of arginase) in a Stat6-dependent manner. Addition of exogenous arginine completely restored NO production in IL-4-treated macrophages. Furthermore, impaired killing of the intracellular pathogen Toxoplasma gondii in IL-4-treated macrophages was overcome by supplementing L-arginine. The simple system of regulated substrate competition between arginase and iNOS has implications for understanding the physiological regulation of NO production.  相似文献   

18.
19.
We investigated the effect of testosterone, the main sexual steroid hormone in men, upon inducible nitric oxide synthesis in murine macrophages. Incubation of murine macrophages (RAW 264.7 cells) stimulated by bacterial lipopolysaccharide (2 microg/ml) with increasing amounts of testosterone (0.1-40 microM) showed a dose dependent inhibition of inducible nitric oxide synthesis. Inducible nitric oxide synthase protein expression was reduced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of testosterone. This was associated with a decline in iNOS mRNA-levels as determined by competitive semiquantitative PCR. As nitric oxide plays an important role in immune defense and atherosclerosis prevention, testosterone-induced iNOS inhibition could lead to an elevated risk of infection as well as to the development of atherosclerotic lesions.  相似文献   

20.
So far N(delta)-methyl-l-arginine (MA) is only detected in yeast cells. Assuming that MA also exists in mammalians we examined possible physiological effects of N(delta)-methylated l-arginine derivatives on the nitric oxide generating system, that is, nitric oxide synthase (NOS), arginase and dimethylarginine dimethylaminohydrolase (DDAH). N(delta)-methyl-l-citrulline (MC) turned out to be a weak non-specific inhibitor of nitric oxide synthases. Moreover, MA is hydroxylated by all human NOS isoforms to N(omega)-hydroxy-N(delta)-methyl-l-arginine (NHAM) but not converted further. This hydroxylated intermediate, however, was detected to be a potent inhibitor of bovine liver arginase with a K(i) of 17.1+/-2.2 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号