首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
5.
Siah proteins are ubiquitin-protein isopeptide ligases (E3) that have been implicated in a variety of cellular actions, including promotion of apoptotic death. Here, we show that Siah1 is a binding partner for POSH (plenty of SH3s), a scaffold component of the apoptotic JNK pathway, and that Siah contributes to death of neurons and other cell types by activating the JNK pathway. Such proapoptotic activity requires the E3 ligase activity of Siah1. Moreover, apoptotic stimuli markedly elevate cellular Siah1 levels by a mechanism reliant on Siah1 protein stabilization. This stabilization requires JNK pathway activation and interaction with POSH and is enhanced by phosphorylation of SIAH1 at tyrosines 100 and 126. Depletion of intracellular Siah proteins via small interference RNA partially protects cells from death evoked by apoptotic stimuli such as trophic factor deprivation and DNA damage. These findings thus reveal a loop mechanism in which the JNK pathway promotes SIAH1 stabilization and in which SIAH1 in turn activates the JNK pathway and, ultimately, contributes to cell death.  相似文献   

6.
7.
RasGRF1 is a neuron-specific guanine nucleotide exchange factor for the small GTPases Ras and Rac. It is implicated in the regulation of memory formation and in the development of tolerance to drug abuse, although the mechanisms have been elucidated only in part. Here we report the isolation, by the yeast two-hybrid screen, of the microtubule-destabilizing factor SCLIP (SCG10-like protein) as a novel RasGRF1-interacting protein. This interaction requires the region spanning the Dbl-homology domain of RasGRF1, endowed with catalytic activity on Rac. In search for a possible function we found by biochemical means that SCLIP influences the signaling properties of RasGRF1, greatly reducing its ability to activate the Rac/p38 MAPK pathway, while the Ras/Erk one remains unaffected. Moreover, a potential role is suggested by transfection studies in neuronal PC12 cells in which RasGRF1 induces neurite outgrowth, and coexpression of SCLIP counteracts this effect, causing a dramatic decrease in the percentage of cells bearing neurites, which also appear significantly shortened. This study unveils a physical and functional interaction between RasGRF1 and SCLIP. We suggest that this novel interplay may have possible implications in mechanisms that regulate neuronal morphology and structural plasticity.  相似文献   

8.
Nucleosomes are actively positioned along DNA by ATP-dependent, chromatin remodelling factors. A structural model for the ISW1a chromatin remodelling factor from Saccharomyces cerevisiae in complex with a dinucleosome substrate was constructed from the X-ray structures of ISW1a (ΔATPase) with and without DNA bound, two different cryo-EM (cryo-electron microscopy) structures of ISW1a (ΔATPase) bound to a nucleosome, and site-directed photo-cross-linking analyses in solution. The X-ray structure of ISW1a (ΔATPase) with DNA bound suggests that DNA sequence may be involved in nucleosome recognition and thereby specificity of promoter interaction. The model suggests how the highly ordered nucleosome arrays observed by mapping nucleosomes in genes and their promoter regions could be generated by a chromatin remodelling factor.  相似文献   

9.
10.
11.
The dynamin-related GTPase, Dnm1, self-assembles into punctate structures that are targeted to the outer mitochondrial membrane where they mediate mitochondrial division. Post-targeting, Dnm1-dependent division is controlled by the actions of the WD repeat protein, Mdv1, and the mitochondrial tetratricopeptide repeat-like outer membrane protein, Fis1. Our previous studies suggest a model where at this step Mdv1 functions as an adaptor linking Fis1 with Dnm1. To gain insight into the exact role of the Fis1.Mdv1.Dnm1 complex in mitochondrial division, we performed a structure-function analysis of the Mdv1 adaptor. Our analysis suggests that dynamic interactions between Mdv1 and Dnm1 play a key role in division by regulating Dnm1 self-assembly.  相似文献   

12.
13.
We have shown that yeast mutants with defects in the Ada adaptor proteins are defective in hormone-dependent gene activation by ectopically expressed human glucocorticoid receptor (GR). Others have shown that the Ada2 protein is required for physical interactions between some activation domains and TBP (TATA-binding protein), whereas the Gcn5 (Ada4) protein has a histone acetyltransferase (HAT) activity. Although all HAT enzymes are able to acetylate histone substrates, some also acetylate non-histone proteins. Taken together, these observations suggest that the Ada proteins have the ability to effect different steps in the process of gene activation. It has recently been shown that the Ada proteins are present in two distinct protein complexes, the Ada complex and a larger SAGA complex. Our recent work has focused on determining (1) which of the Ada-containing complexes mediates gene activation by GR, (2) whether the HAT activity encoded by GCN5 is required for GR-dependent gene activation, (3) whether the Ada proteins contribute to GR-mediated activation at the level of chromatin remodelling and (4) how the role of these HAT complexes is integrated with other chromatin remodelling activities during GR-mediated gene activation. Our results suggest a model in which GR recruits the SAGA complex and that this contributes to chromatin remodelling via a mechanism involving the acetylation of histones. Furthermore, recruitment of the SWI/SNF remodelling complex also has a role in GR-mediated activation that is independent of the role of SAGA. These complexes are similar to analogous mammalian complexes and therefore these results are likely to be relevant to the human system.  相似文献   

14.
15.
16.
17.
18.
19.
20.
USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号