首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A temperature-sensitive Schizosaccharomyces pombe mutant, cdc16-116, has been isolated which undergoes uncontrolled septation during its cell division cycle. The mutant accumulates two types of cells after 3 h of growth at the restrictive temperature: (i) type I cells (85% of the population), which complete nuclear division and then form up to five septa between the divided nuclei; and (ii) type II cells (15% of the population), which form an asymmetrically situated septum in the absence of any nuclear division. cdc16-116 is a monogenic recessive mutation unlinked to any previously known cdc gene of S. pombe. It is not affected in a previously reported control by which septation is dependent upon completion of nuclear division. We propose the cdc16-116 is unable to complete septum formation and proceed to cell separation and is also defective in a control which prevents the manufacture of more than one septum in each cell cycle.  相似文献   

3.
Summary The volumes of whole cells and nuclei of cultured human cells were studied at different times after synchronization of growth using the Coulter counter and scanning microphotometry. It was found that the increase in cell volume is compatible with both linear or exponential growth during the cell cycle. The growth of the nuclear volume is not correlated with the beginning of the DNA synthesis. The nuclear volume starts to increase already 6 h prior DNA synthesis. The data also indicate that the nuclear volume growth could proceed in two stages. The relation of this result to radiation sensitivity is discussed.This research was carried out under contract no. 215-76-10-BIO-D, Radiation Protection programme of the Commission of the European Community (Publication no. BIO 1747)  相似文献   

4.
Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus.  相似文献   

5.
Plasmonic nanoparticle research has become increasingly active due to potential uses in biomedical applications. However, little is known about the intracellular effects these nanoparticles have on mammalian cells. The aim of this work is to investigate whether silver nanoparticles (AgNPs) conjugated with nuclear and cytoplasmic targeting peptides exhibit the same intracellular effects on cancer cells as peptide-conjugated gold nanoparticles (AuNPs). Nuclear and cytoplasmic targeting spherical AgNPs with a diameter of 35 nm were incubated in a cancer (HSC-3) and healthy (HaCat) cell line. By utilizing flow cytometry, confocal microscopy, and real-time dark field imaging, we were able to analyze how targeting AgNPs affect the cell cycle and cell division. These experiments demonstrated that nuclear-targeting AgNPs cause DNA double-strand breaks and a subsequent increase in the sub G1 (apoptotic) population in our cancer cell model at much lower concentrations than previously reported for nuclear targeting AuNPs. Unlike the M phase accumulation seen in cancer cells treated with AuNPs, an accumulation in the G2 phase of the cell cycle was observed in both cell models when treated with AgNPs. Additionally, real-time dark field imaging showed that cancer cells treated with nuclear targeting AgNPs did not undergo cell division and ultimately underwent programmed cell death. A possible explanation of the observed results is discussed in terms of the chemical properties of the nanoparticles.  相似文献   

6.
A microfluorimetric procedure, employing the fluorescent stain 33258 Hoechst, has been developed for the investigation of the process of DNA synthesis during the initial stages of culture of tobacco ( N. tabacum cv. Xanthi) leaf protoplasts.
In this system, the freshly-isolated protoplasts exhibited a unimodal distribution of nuclear DNA content characteristic of the diploid state. The almost immediate onset of DNA synthesis during culture resulted in a doubling of nuclear DNA levels prior to the first mitoses. Although the majority of the protoplasts subsequently entered into synchronous mitosis and cell division, a proportion of the remainder developed into large polyploid cells. Upon further culture, the polyploid cells became subdivided into clusters of small diploid cells. Measurement of total cell protein and cell volumes during culture indicated that a relationship existed between these parameters and the initiation of mitosis. The significance of these observations is discussed.  相似文献   

7.
The purpose of this investigation was to measure quantitatively nuclear volumes in outer fasciculata cells in adrenal glands of rats subjected to chronic stimulation of steroidogenesis by ACTH, or to chronic inhibition of functional activity by hypophysectomy or by injection of the steroidogenic inhibitos, U-8113 (p-aminophenyl butanone) and SU-4885 (metopirone). Nuclear volumes, after a recovery period from those effects, were also measured. Chronic daily administrations of ACTH for 7, 14, and 30 days led to a progressive, statistically significant increase in nuclear volumes of fasciculata cells. These changes were found to have been reversed 14 days after discontinuation of hormone treatment. Hypophysectomy resulted in a significant decrease in nuclear volumes. The steroidogenic inhibitors SU-4885 and U-8113 had a biphasic effect on the nuclear volumes with an early decrease and subsequent increase to normal values. Since a decrease in nuclear volumes in the adrenal glands of inhibitor-treated subjects occurred in the presence of cellular hypertrophy and a significant increase in adrenal weights, it is concluded that changes in nuclear volumes can be positively correlated with the secretory activity of the cell rather than with the sizes of cells or glands.  相似文献   

8.
The molecular mechanisms of de novo meristem formation, cell differentiation and the integration of the cell cycle machinery into appropriate stages of the developmental programmes are still largely unknown in plants. Legume root nodules, which house nitrogen-fixing rhizobia, are unique plant organs and their development may serve as a model for organogenetic processes in plants. Nodules form and are essential for the plant only under limitation of combined nitrogen in the soil. Moreover, their development is triggered by external mitogenic signals produced by their symbiotic partners, the rhizobia. These signals, the lipochitooligosaccharide Nod factors, act as host-specific morphogens and induce the re-entry of root cortical cells into mitotic cycles. Maintenance of cell division activity leads to the formation of a persistent nodule meristem from which cells exit continuously and enter the nodule differentiation programme, involving multiple cycles of endoreduplication and enlargement of nuclear and cell volumes. While the small diploid 2C cells remain uninfected, the large polyploid cells can be invaded and, after completing the differentiation programme, host the nitrogen-fixing bacteroids. This review summarizes the present knowledge on cell cycle reactivation and meristem formation in response to Nod factors and reports on a novel plant cell cycle regulator that can switch mitotic cycles to differentiation programmes.  相似文献   

9.
Cellular and nuclear volume during the cell cycle of NHIK 3025 cells   总被引:4,自引:0,他引:4  
The distribution of cellular and nuclear volume in synchronous populations of NHIK 3025 cells, which derive from a cervix carcinoma, have been measured by electronic sizing during the first cell cycle after mitotic selection. Cells given an X-ray dose of 580 rad in G1, were also studied. During the entire cell cycle the volume distribution of both cells and nuclei is an approximately Gaussian peak with a relative width at half maximum of about 30%. About half of this width is due to imperfect synchrony whereas the rest is associated with various time invariant factors. During S the mean volume of the cells grows exponentially whereas the nuclear volume increases faster than for exponential kinetics. Hence, although cellular and nuclear volumes are closely correlated, their ratio does not remain constant during the cell cycle. Volume growth during the first half of G1 is negligible especially for nuclei where the growth appears to be closely associated with DNA-synthesis. For unirradiated cells the growth of cellular and nuclear volume is negligible also during G2 + M. In contrast, the X-irradiated cells continue to grow during the 6 hr mitotic delay with a rate that is constant and about half of that observed in late S. Hence, radiation induced mitotic delay does not appear merely as a lengthening of an otherwise normal G2. During G1 and S the irradiated cells were identical to unirradiated ones with respect to all the parameters measured.  相似文献   

10.
Regulation of proliferating cell nuclear antigen during the cell cycle   总被引:53,自引:0,他引:53  
The proliferating cell nuclear antigen (PCNA), also known as cyclin and DNA polymerase delta auxiliary factor, is present in reduced amounts in nongrowing cells and is synthesized at a greater rate in the S phase of growing cells. The recently discovered involvement of PCNA in DNA replication suggested that this pattern of expression functions to regulate DNA synthesis. We have investigated this possibility further by examining the synthesis, stability, and accumulation of PCNA in HeLa cells fractionated by centrifugal elutriation into nearly synchronous populations of cells at various positions in the cell cycle. In these fractionated cells we found that there is an increase in the rate of PCNA synthesis with a peak in early S phase of the cell cycle, but the magnitude of the increase is only 2-3-fold. This change reflects similar changes in the amount of PCNA mRNA. The fluctuating synthesis of PCNA maintains this protein at a roughly constant proportion of the total cell protein, although the amount doubles/cell in the cell cycle. Consistent with this observation, the stability of PCNA does not differ significantly from that of total cellular protein in synchronized HeLa cells. We also observed that a maximum of one-third of the total PCNA is tightly associated with the nucleus, presumably in replication complexes, at the peak of S phase. We conclude that the cyclic synthesis of PCNA in cycling HeLa cells maintains PCNA in excess of the amount involved directly in DNA replication and the amount of the protein neither fluctuates significantly with the cell cycle nor is limiting for DNA synthesis.  相似文献   

11.
The yeast-phase cell cycle of Wangiella dermatitidis was studied using flow microfluorimetry and the deoxyribonucleic acid (DNA) synthesis inhibitor hydroxyurea (HU). Exposure of exponential-phase yeastlike cells to 0.1 M HU for 3 to 6 h resulted in the arrest of the cells in DNA synthesis and produced a nearly homogeneous population of unbudded cells. Treatment of the yeast-phase cells with HU for 9 h or longer resulted in the accumulation of the cells predominantly as budded forms having either a single nucleus in the mother cell or a single nucleus arrested in the isthmus between the mother cell and the daughter bud. Exposure of unbudded stationary-phase cells to 0.1 M HU resulted in the accumulation of the cells in the same phenotypes. Analysis by flow microfluorimetry and cell counts of HU-inhibited mithramycin-stained cells indicated that the eventual progress of HU-inhibited cells from unbudded to the two budded forms was due to the limited continuation of the growth sequence of the cell cycle even in the absence of DNA synthesis, nuclear division, and in some cases nuclear migration. On the basis of these observations and the results of flow microfluorimetric analysis of exponential-phase cells, a map of the yeast-phase cell cycle was constructed. The cycle appears to consist of two independent sequences of events, a budding growth sequence and a DNA division sequence. The nuclear division cycle of yeast-phase cells growing exponentially with a 4.5-h generation time is composed of a G1 interval of 148 min, as S phase of 16 min, and a G2 plus M interval of 107 min.  相似文献   

12.
Nuclear targeting and cell cycle regulatory function of human BARD1   总被引:1,自引:0,他引:1  
The BARD1 gene is mutated in a subset of breast and ovarian cancers, implicating BARD1 as a potential tumor suppressor. BARD1 gains a ubiquitin E3 ligase activity when heterodimerized with BRCA1, but the only known BRCA1-independent BARD1 function is a p53-dependent proapoptotic activity stimulated by nuclear export to the cytoplasm. We described previously the nuclear-cytoplasmic shuttling of BARD1, and in this study, we identify the transport sequences that target BARD1 to the nucleus and show that they are essential for BARD1 regulation of the cell cycle. We used deletion mapping and mutagenesis to define two active nuclear localization signals (NLSs) present in human BARD1 that are not conserved in rodent BARD1. Site-directed mutagenesis of the primary bipartite NLS abolished BARD1 nuclear import and caused its cytoplasmic accumulation. Using flow cytometry and 5-bromo-2-deoxyuridine incorporation assays, we discovered that transiently expressed BARD1 can elicit a p53-independent cell cycle arrest in G1 phase, and that this was abrogated by mutation of the BARD1 NLS but not by mutation of the nuclear export signal. Thus, BARD1 regulation of the cell cycle is a nuclear event and may be linked to its induced expression during mitosis and its possible involvement in the DNA damage checkpoint.  相似文献   

13.
Phosphatidylinositol-specific phospholipase C (PI-PLC) is activated in cell nuclei during the cell cycle progression. We have previously demonstrated two peaks of an increase in the nuclear PI-PLC activities in nocodazole-synchronized HL-60 cells. In this study, the activity of nuclear PI-PLC was investigated in serum-stimulated HL-60 cells. In serum-starved HL-60 cells, two peaks of the activity of nuclear PI-PLC were detected at 30 min and 11 h after the re-addition of serum with no parallel increase in PLC activity in cytosol, postnuclear membranes or total cell lysates. An increase in the serine phosphorylation of b splicing variant of PI-PLCbeta(1) was detected with no change in the amount of PI-PLCbeta(1b) in nuclei isolated at 30 min and 11 h after the addition of serum. PI-PLC inhibitor ET-18-OCH(3) and MEK inhibitor PD 98059 completely abolished serum-mediated increase at both time-points. The addition of inhibitors either immediately or 6 h after the addition of serum had inhibitory effects on the number of cells entering S phase. These results demonstrate that two waves of nuclear PI-PLCbeta(1b) activity occur in serum-stimulated cells during G(1) phase of the cell cycle and that the later increase in the PLC activity is equally important for the progression into the S phase.  相似文献   

14.
15.
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by progressive cyst formation and ultimate loss of renal function. Increased cell proliferation is a key feature of the disease. Here, we show that the ADPKD protein polycystin-2 (PC2) regulates the cell cycle through direct interaction with Id2, a member of the helix-loop-helix (HLH) protein family that is known to regulate cell proliferation and differentiation. Id2 expression suppresses the induction of a cyclin-dependent kinase inhibitor, p21, by either polycystin-1 (PC1) or PC2. The PC2-Id2 interaction is regulated by PC1-dependent phosphorylation of PC2. Enhanced Id2 nuclear localization is seen in human and mouse cystic kidneys. Inhibition of Id2 expression by RNA interference corrects the hyperproliferative phenotype of PC1 mutant cells. We propose that Id2 has a crucial role in cell-cycle regulation that is mediated by PC1 and PC2.  相似文献   

16.
The breast tumor kinase (BRK) is a growth promoting non-receptor tyrosine kinase overexpressed in the majority of human breast tumors. BRK is known to potentiate the epidermal growth factor (EGF) response in these cells. Although BRK is known to phosphorylate the RNA-binding protein Sam68, the specific tyrosines phosphorylated and the exact role of this phosphorylation remains unknown. Herein, we have generated Sam68 phospho-specific antibodies against C-terminal phosphorylated tyrosine residues within the Sam68 nuclear localization signal. We show that BRK phosphorylates Sam68 on all three tyrosines in the nuclear localization signal. By indirect immunofluorescence we observed that BRK and EGF treatment not only phosphorylates Sam68 but also induces its relocalization. Tyrosine 440 was identified as a principal modulator of Sam68 localization and this site was phosphorylated in response to EGF treatment in human breast tumor cell lines. Moreover, this phosphorylation event was inhibited by BRK small interfering RNA treatment, consistent with Sam68 being a physiological substrate of BRK downstream of the EGF receptor in breast cancer cells. Finally, we observed that Sam68 suppressed BRK-induced cell proliferation, suggesting that Sam68 does indeed contain anti-proliferative properties that may be neutralized in breast cancer cells by phosphorylation.  相似文献   

17.
Nuclear/cytoplasmic localization of Akt activity in the cell cycle   总被引:1,自引:0,他引:1  
Summary. The serine/threonine protein kinase Akt (also known as PKB) is a proto-oncogene and one of the most frequently hyperactivated kinases in human cancer. Its activation downstream of growth-factor-stimulated phosphatidylinositide-3′-OH kinase activity plays a role in the control of cell cycle, cell growth, apoptosis and cell energy metabolism. Akt phosphorylates some thousand downstream substrates, including typical cytoplasmic as well as nuclear proteins. Accordingly, it is not surprising that Akt activity can be found in both, the cytoplasm and the nucleus. Here we report the cell cycle regulation of nuclear and cytoplasmic Akt activity in mammalian cells. These data provide new insights into the regulation of Akt activity and have implications for future studies on the regulation of the wide variety of different nuclear and cytoplasmic Akt substrates.  相似文献   

18.
The gilthead seabream is a protandrous hermaphrodite seasonal breeding teleost with a bisexual gonad that offers an interesting model for studying the testicular regression process that occurs in both seasonal testicular involution and sex change. Insofar as fish reproduction is concerned, little is known about cell renewal and elimination during the reproductive cycle of seasonal breeding teleosts with asynchronous spermatogenesis. We have previously described how acidophilic granulocytes infiltrate the testis during postspawning where, surprisingly, they produce interleukin-1beta, a known growth factor for mammalian spermatogonia, rather than being directly involved in the elimination of degenerative germ cells. In this study, we are able to discriminate between spermatogonia stem cells and primary spermatogonia according to their nuclear and cytoplasmic diameters and location in the germinal epithelium, finding that these two cell types, together with Sertoli cells, proliferate throughout the reproductive cycle with a rate that depends on the reproductive stage. Thus, during spermatogenesis the spermatogonia stem cells, the Sertoli cells, and the developing germ cells (primary spermatogonia, A and B spermatogonia, and spermatocytes) in the germinal compartment, and cells with fibroblast-shaped nuclei in the interstitial tissue proliferate. However, during spawning, the testis shows few proliferating cells. During postspawning, the resumption of proliferation, the occurrence of apoptotic spermatogonia, and the phagocytosis of nonshed spermatozoa by Sertoli cells lead to a reorganization of both the germinal compartment and the interstitial tissue. Finally, the proliferation of spermatogonia increases during resting when, unexpectedly, both oogonia and oocytes also proliferate. This proliferative pattern was correlated with the gonadosomatic index, testicular morphology, and testicular and gonad areas, suggesting that complex mechanisms operate in the regulation of gonocyte proliferation in hermaphrodite fish.  相似文献   

19.
20.
In eukaryotic cells, nucleus-cytoplasm exchanges play an important role in genomic regulation. We have analyzed the localization of four nuclear antigens in different growth conditions: two replicative proteins, DNA polymerase alpha and proliferating cell nuclear antigen (PCNA), and two oncogenic regulatory proteins, c-Myc and c-Fos. A kinetic study of subcellular localization of these proteins has been done. In cultures in which cells were sparse, these proteins were detected in the nucleus. When proliferation was stopped by the high density of culture cells or by serum starvation, these proteins left the nucleus for the cytoplasm with different kinetics. DNA polymerase alpha is the first protein to leave the nucleus, with the PCNA protein, c-Fos, and c-Myc leaving the nucleus later. In contrast, during serum stimulation c-Fos and c-Myc relocalize into the nucleus before the replicative proteins. We also noticed that in sparse cell cultures, 10% of the cells exhibit a perinuclear staining for the DNA polymerase alpha, PCNA, and c-Myc proteins but not for c-Fos. This peculiar staining was also observed as an initial step to nuclear localization after serum stimulation and in vivo in Xenopus embryos when the G1 phase is reintroduced in the embryonic cell cycle at the mid-blastula stage. We suggest that such staining could reflect specific structures involved in the initiation of the S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号