首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine whether the gonadal and hypophyseal modes of regulation recently reported for the microsomal enzymes of hepatic steroid metabolism are also valid for cytoplasmic enzymes, three enzymes whose activities exhibit sex differences (male:female activity ratio shown in brackets), 5beta-reductase(1.7:1), 20alpha-hydroxysteroid dehydrogenase(5 : 1) and 17beta-hydroxysteroid dehydrogenase (4:1), as well as one enzyme whose activity shows no sex difference, 3beta-hydroxy-delta5-steroid dehydrogenase, were investigated after various interferences with the endocrine balance (gonadectomy, hypophysectomy, combination of both operations, administration of testosterone or oestradiol). From the results of this and a previous study the following statements can be made about the endocrine control of hepatic enzyme activities. Those enzymes whose activities show sex differences are either androgen or oestrogen dependent; the sex hormone acts in either an inductive or repressive manner. 1) Criteria for androgen dependency are the feminization of enzyme activity after testectomy or inhibition of testicular function by administration of oestradiol; masculinization of the enzyme activity after administration of testosterone to male or female castrates. Using these criteria the following enzymes investigated in this laboratory fall into this category: all microsomal enzymes which show sex differences in their activity (3alpha-, 3beta-, delta4-3beta, 20-hydroxysteroid dehydrogenase; cortisone alpha-reductase; steroid hydroxylases and 16alpha-hydroxylase) as well as the cytoplasmic 20alpha-hydroxysteroid dehydrogenase. Apart from the single exception of 20alpha-hydroxy-steroid dehydrogenase the presence of the hypophysis is obligatory for the androgen to be effective. The hypophysis does not only work in a permissive manner, but participates in establishing the sex specific activity levels in a manner which is antagonistic to the androgen action. 2) Criteria for oestrogen dependency are that the female animal reacts to gonadectomy, as well as to the inhibition of ovarian function after testosterone administration, by a masculinization of the enzyme activities. After administration of oestradiol, but not gonadectomy, the male animal exhibits typical female activity. Using these criteria the cytoplasmic 5beta-reductase and 17beta-hydroxysteroid dehydrogenase are oestrogen dependent. The repressive oestrogen effect observed on 17beta-hydroxysteroid dehydrogenase is antagonistic to hypophyseal action, whereas in the case of 5beta-reductase it is synergistic. 3) The activities of cytoplasmic 3beta-hydroxy-delta5-steroid dehydrogenase and microsomal 7alpha-hydroxylase show no sex differences and are not influenced by any interference with the endocrine balance.  相似文献   

2.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

3.
Rat liver contains two cytosolic enzymes (TBER1 and TBER2) that reduce 6-tert-butyl-2,3-epoxy-5-cyclohexene-1,4-dione into its 4R- and 4S-hydroxy metabolites. In this study, we cloned the cDNA for TBER1 and examined endogenous substrates using the homogenous recombinant enzyme. The cDNA encoded a protein composed of 323 amino acids belonging to the aldo-keto reductase family. The recombinant TBER1 efficiently oxidized 17beta-hydroxysteroids and xenobiotic alicyclic alcohols using NAD+ as the preferred coenzyme at pH 7.4, and showed low activity towards 20alpha- and 3alpha-hydroxysteroids, and 9-hydroxyprostaglandins. The enzyme was potently inhibited by diethylstilbestrol, hexestrol and zearalenone. The coenzyme specificity, broad substrate specificity and inhibitor sensitivity of the enzyme differed from those of rat NADPH-dependent 17beta-hydroxysteroid dehydrogenase type 5, which was cloned from the liver and characterized using the recombinant enzyme. The mRNA for TBER1 was highly expressed in rat liver, gastrointestinal tract and ovary, in contrast to specific expression of 17beta-hydroxysteroid dehydrogenase type 5 mRNA in the liver and kidney. Thus, TBER1 represents a novel type of 17beta-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. In addition, TBER2 was identified as 3alpha-hydroxysteroid dehydrogenase on chromatographic analysis of the enzyme activities in rat liver cytosol and characterization of the recombinant 3alpha-hydroxysteroid dehydrogenase.  相似文献   

4.
The six forms of the 17alpha-hydroxy steroid dehydrogenase purified from rabbit liver cytosol have very similar physical properties. The molecular weights of all the enzymes were within 3% of the average mol.wt of 39 600. Only one of the six enzymes showed a significant difference in amino acid composition. All but one form of the 17alpha-hydroxy steroid dehydrogenases exhibited greater activities towards the androgen, epitestosterone, than towards oestrogen substrates. With oestrogen substrates one enzyme displayed a high specificity towards the substrate oestradiol-17alpha 3-glucuronide. This high activity was lost if the glucuronic acid moiety was removed or replaced by glucose or galacturonic acid. The other enzyme forms had approximately equal activity toward oestradiol-17alpha and its glucuronide or glucoside derivative. However, substitution of galacturonic acid at C-3 of oestradiol-17alpha substantially decreased the activity of all but one enzyme form.  相似文献   

5.
The activities of cytoplasmic 3 alpha- and 17 beta-hydroxysteroid dehydrogenase, microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and microsomal 5 alpha-reductase of rat liver were determined at different time points after gonadectomy on day 75 of life. Following testectomy the activities in male rats assume female values. However this change is relatively slow, 10--14 days being necessary for significant trends in individual activities to develop, and 40--60 days before the final level of activity is reached. The changes in enzyme activities after ovariectomy are only slight. The change in microsomal 5 alpha-reductase activity following gonadectomy of male rats is biphasic, the activity increasing initially to the normal female level before falling to the intermediate "neonatally androgen-imprinted" level. The reaction of 17 beta-hydroxysteroid dehydrogenase activity to testectomy and ovariectomy indicates that in the course of several years, during which we have investigated the behaviour of this enzyme in Chbb/THOM rats, the regulation of its activity has changed from one of oestrogen dependency to one of androgen dependency.  相似文献   

6.
Alveolar macrophages obtained by bronchoalveolar lavage of lungs of male and female guinea pigs were incubated with tritium-labelled androstenedione to evaluate the steroid metabolizing enzymes in these cells. The radiolabeled metabolites were isolated and thereafter characterized as testosterone, 5 alpha-androstanedione, 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol. Thus, the following androstenedione metabolizing enzymes are present in guinea-pig alveolar macrophages: 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase. The predominant androstenedione metabolizing enzyme activity present in alveolar macrophages was 17 beta-hydroxysteroid dehydrogenase. The rate of testosterone formation increased with incubation time up to 4 h, and with macrophage number up to 1.6 X 10(7) cells per ml. Androstenedione metabolism was similar in alveolar macrophages obtained both from male and female guinea pigs. These results suggest that alveolar macrophages may be a site of peripheral transformation of blood-borne androstenedione to biologically potent androgens in vivo and, therefore, these cells may contribute to the plasma levels of testosterone in the guinea pig.  相似文献   

7.
Dihydrodiol dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase activity in rat and rabbit liver cytosol have been analyzed by isoelectric focussing and subsequent activity staining. Identity of the two enzymes in rat liver cytosol is demonstrated. At least 4 main enzyme forms possessing dihydrodiol dehydrogenase activity can be detected in rabbit liver cytosol. However, in this species, only one of these forms has measurable activity towards 3 alpha-hydroxysteroids.  相似文献   

8.
1. Dihydrodiol dehydrogenase activities were investigated in rabbit liver. Using a five-step purification scheme, eight isoenzymes of dihydrodiol dehydrogenase with isoelectric points of 5.55-9.3 and promoter molecular masses of 34-35 kDa were purified to apparent homogeneity and designated CF-1 to CF-6, CM-1 and CM-2. 2. CF-1 and CF-2 had near-neutral isoelectric points of 7.4 and 6.8 and molecular masses of about 125 kDa in the native state. Both enzymes readily accepted NAD+ as well as NADP+ as coenzymes, had relatively low Km values of 0.33 mM and 0.47 mM for benzene dihydrodiol and resembled previously described carbonyl reductases in their substrate specificity towards ketones and quinones. 3. CF-5 and CF-6 had acidic isoelectric points of 5.9 and 5.55 and native molecular masses of approximately 60 kDa. They displayed a strong preference for NADP(H) as coenzyme and had high Km and Vmax with benzene dihydrodiol. Since these enzymes reduced p-nitrobenzaldehyde and glucuronic acid efficiently, they appeared to be closely related to aldehyde reductase. 4. CF-4 had a high 3 alpha-hydroxysteroid dehydrogenase activity for the diagnostic substrate androsterone, a moderate activity for other 3 alpha-hydroxysteroids as well as 17 alpha-hydroxysteroids, and relatively low activities for 3 beta-hydroxysteroids and 17 beta-hydroxysteroids. CF-5 and CM-1 had high 17 beta-hydroxysteroid dehydrogenase activity for the diagnostic substrate 5 alpha-dihydrotestosterone, and low to moderate activities for other 17 beta-hydroxysteroids as well as 3 alpha-hydroxysteroids. 5. The isoenzyme CM-2 had an isoelectric point of 9.3 and was a very active quinone reductase with phenanthrene-9,10-quinone as substrate. It was potently inhibited by phenobarbital. 6. We conclude that the dihydrodiol dehydrogenase activities of rabbit liver are associated with aldehyde and carbonyl reductase and with 3 alpha-hydroxysteroid and 17 beta-hydroxysteroid dehydrogenases.  相似文献   

9.
With the exception of 3beta-hydroxy-steroid dehydrogenase all the hydroxysteroid dehydrogenases of adult male and female rat kidney show significant sex differences in their activities. Interference with the organisms endocrine balance (gonadectomy on day 25 of life, hypophysectomy on day 50, a combination of both these operations, administration of testosterone or oestradiol) demonstrates that the sexually differentiated enzyme activities may be classified as androgen or oestrogen dependent, the respective sex hormone acting either in an inductive or repressive manner. The criteria for androgen dependency (microsomal 3alpha- and 20beta-, cytoplasmic 17beta- and 20alpha- hydroxysteroid dehydrogenase) are the feminization of the enzyme activity in male animals after castration and the masculinization of the activity in male and female castrates as well as in normal female animals after administration of testosterone. This latter effect on normal females cannot be a testosterone mediated inhibition of ovarian function since ovariectomy has no effect. For 3alpha-, 20alpha-, and 20beta-hydroxysteroid dehydrogenase the effects of hypophysectomy parallel those of gonadectomy. However, after hypophysectomy the activity of 17beta-hydroxysteroid dehydrogenase falls significantly below the gonadectomized level. The androgen effect on 3alpha and 20beta-hydroxysteroid dehydrogenase is independent of the hypophysis, whereas that of 17beta- and 20alpha-hydroxysteroid dehydrogenase is mediated by the hypophysis.  相似文献   

10.
The presence and distribution of delta 5-3 beta-hydroxysteroid dehydrogenase (delta 5-3 beta-HSD: EC 1.1.1.51) and 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD: EC 1.1.1.51) were studied histochemically in the excurrent ducts of the rabbit, hamster and marmoset monkey. Dehydroepiandrosterone (DHEA) and testosterone were used as substrates for delta 5-3 beta-HSD and 17 beta-HSD respectively, while phenanthroline monohydrate was used to eliminate non-specific staining due to other tissue dehydrogenases. The rabbit possessed least enzyme activity, which was confined to tubules in the middle segment of the epididymis. Enzyme activity was demonstrable throughout the excurrent ducts of the hamster and marmoset, with maximal staining occurring in the middle segment of the epididymis in both species. The region of maximum activity of hydroxysteroid dehydrogenase is where spermatozoa first develop their fertilizing capacity.  相似文献   

11.
This investigation was undertaken to elucidate the amount of oestradiol and duration of its administration necessary to cause complete feminization of the activities of cytoplasmic 3 alpha- and 17 beta-hydroxysteroid dehydrogenase, microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and microsomal 5 alpha-reductase in male rat liver. With the exception of cytoplasmic 3 alpha-hydroxysteroid dehydrogenase, 5 microgram oestradiol/d for 8 days and less was sufficient to cause complete feminization. The order of oestrogen sensitivity was cytoplasmic 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 3 beta-hydroxysteroid dehydrogenase greater than microsomal 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 5 alpha-reductase greater than cytoplasmic 17 beta-hydroxysteroid dehydrogenase. Although the changes occurring after oestradiol administration are qualitatively the same as after testectomy, they occur more rapidly. This rules out the possibility that oestradiol exerts its effect via androgen deprivation. Diethylstilboestrol administration causes the same changes in cytoplasmic 17 beta- and microsomal 3 beta-hydroxysteroid dehydrogenase activity as oestradiol, although the dosage must be increased 100 fold. The effect of diethylstilboestrol on 5 alpha-reductase activity changes with the dose applied. Doses up to 100 microgram/d partially feminize the activity, but at higher doses the enzyme activity is repressed.  相似文献   

12.
The synthesis and activity of a new series of non-steroidal inhibitors of 17beta-hydroxysteroid dehydrogenase that are based on a 1,5-benzodiazepine scaffold are presented. Their inhibitory potential was screened against 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a model enzyme of the short-chain dehydrogenase/reductase superfamily. Some of these compounds are potent inhibitors of 17beta-HSDcl activity, with IC50 values in the low micromolar range and represent promising lead compounds that should be further developed and investigated as inhibitors of human 17beta-HSD isoforms, which are the enzymes associated with the development of many hormone-dependent and neuronal diseases.  相似文献   

13.
Steroidogenic enzymes belonging to the aldo-keto reductase family (AKR) possess highly homologous sequences while having different activities. To gain further knowledge about the function as well as the regulation of these enzymes in the monkey, we have isolated cDNA sequences encoding monkey type 5 17beta-hydroxysteroid dehydrogenase, 20alpha-hydroxysteroid dehydrogenase and 3alpha-hydroxysteroid dehydrogenase, and characterized their enzymatic activity and mRNA tissue distribution. Sequence analysis indicates that these enzymes share approximately 94 and 76% amino acid identity with human and mouse homologs, respectively. Monkey type 5 17beta-HSD possesses 95.9% amino acid sequence identity with human type 5 17beta-HSD. It catalyzes the transformation of 4-androstenedione into testosterone, but it lacks 20alpha-hydroxysteroid dehydrogenase activity that is present in the human enzyme. This activity seems to be specific to human, since mouse type 5 17beta-HSD does not show significant 20alpha-HSD activity. In addition, monkey and mouse 20alpha-HSD possess relatively high 20alpha-, 3alpha-, and 17beta-HSD activities, while their human counterpart is confined to 20alpha-HSD activity. The monkey 3alpha-HSD possesses relatively high 3alpha-, 17beta-, and 20alpha-HSD activities; human type 1 3alpha-HSD exerts 3alpha- and 20alpha-HSD activities; the mouse 3alpha-HSD displays a unique 3alpha-HSD activity. Quantification of mRNA expression shows that the monkey 3alpha-HSD is exclusively expressed in the liver, while the type 5 17beta-HSD is predominately found in the kidney, with lower levels observed in the stomach, liver, and colon. Monkey 20alpha-HSD mRNA is highly expressed in the kidney, stomach, and liver. Our study provides the basis for future investigations on the regulation and function of these enzymes in the monkey.  相似文献   

14.
Two NADPH-dependent aromatic aldehyde-ketone reductases purified from guinea pig liver catalyzed oxidoreduction of 17 beta-hydroxysteroids and 17-ketosteroids. One enzyme efficiently oxidized 5 beta-androstanes and reduced 17-ketosteroids of A/B cis configuration, whereas the other enzyme efficiently oxidized 5 alpha-androstanes and equally reduced both 5 alpha-and 5 beta-androstanes of 17-ketosteroids. However, aromatic aldehydes and ketones, and 3-ketosteroids were irreversibly reduced by the two enzymes. The two enzymes utilized NADP+ or NADPH as cofactor, but little activity with NAD+ or NADH was found. Phosphate ions enhanced the NAD+-dependent dehydrogenase activity and NADH-dependent reductase activity of the two enzymes, whereas the activities with NADP+ and NADPH were not affected. The ratios of the two activities of ketone reduction and 17 beta-hydroxysteroid oxidation of the two enzymes were almost constant during the purification steps after the two enzymes had been separated by DEAE-cellulose chromatography. By kinetic studies and electrophoresis and isoelectric focusing experiments it was confirmed that both of the two enzymes were responsile for the reduction aldehydes, ketones, and ketosteroids and for the oxidation of 17 beta-hydroxysteroids. These results indicate that 17 beta-hydroxysteroid dehydrogenases may play important roles in the metabolism of exogeneous aldehydes and ketones as well as steroids.  相似文献   

15.
Three enzyme forms (CR1, CR2 and CR3) of carbonyl reductase were purified from chicken liver with using 4-benzoylpyridine as a substrate. CR1 was a dimeric enzyme composed of two identical 25-kD subunits. CR2 and CR3 were monomeric enzymes whose molecular weights were both 32 kD. CR1 exhibited 17 beta-hydroxysteroid dehydrogenase activity as well as carbonyl reductase activity in the presence of both NADP(H) and NAD(H). CR2 and CR3 had similar properties with regard to substrate specificity and inhibitor sensitivity. They could exhibit the activity only with NADPH and had no hydroxysteroid dehydrogenase activity. CR2 and CR3 cross-reacted with anti-chicken kidney carbonyl reductase antibody, though CR1 did not. The results suggest that CR1 is a hydroxysteroid dehydrogenase, and CR2 and CR3 are similar to each other and to the kidney enzymes.  相似文献   

16.
Class III alcohol dehydrogenase, whose activity toward ethanol is negligible, has defined, specific properties and is not just a "variant" of the class I protein, the traditional liver enzyme. The primary structure of the horse class III protein has now been determined, and this allows the comparison of alcohol dehydrogenases from human, horse, and rat for both classes III and I, providing identical triads for both these enzyme types. Many consistent differences between the classes separate the two forms as distinct enzymes with characteristic properties. The mammalian class III enzymes are much less variable in structure than the corresponding typical liver enzymes of class I: there are 35 versus 84 positional differences in these identical three-species sets. The class III and class I subunits contain four versus two tryptophan residues, respectively. This makes the differences in absorbance at 280 nm a characteristic property. There are also 4-6 fewer positive charges in the class III enzymes accounting for their electrophoretic differences. The substrate binding site of class III differs from that of class I by replacements at positions that form the hydrophobic barrel typical for this site. In class III, two to four of these positions contain residues with polar or even charged side chains (positions 57 and 93 in all species, plus positions 116 in the horse and 140 in the human and the horse), while corresponding intraclass variation is small. All these structural features correlate with functional characteristics and suggest that the enzyme classes serve different roles. In addition, the replacements between these triad sets illustrate further general properties of the two mammalian alcohol dehydrogenase classes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Eight distinct forms of the soluble 17alpha-hydroxy steroid dehydrogenase of rabbit liver were resolved by DEAE-cellulose chromatography and isoelectric focusing. Five of these enzymes were homogeneous as judged by polyacrylamide-gel electrophoresis. Substrate-specificity studies carried out with oestradiol-17alpha and oestradiol-17alpha 3-glucuronide revealed a variation in activity toward these substrates among the different purified enzyme forms. Three forms of the 17alpha-hydroxy steroid dehydrogenase exhibited equal activity toward both oestrogen substrates, whereas three forms of the enzyme displayed a greater activity toward the glucuronide derivative of oestradiol-17alpha. One enzyme in particular is essentially specific for oestradiol-17alpha 3-glucuronide, its activity toward oestradiol-17alpha being only one-thirtieth that observed with the 3-glucuronide derivative.  相似文献   

18.
The case of a true hermaphrodite, with a normal ovary and an ovotestis is presented. The ovotestis was removed and incubated in vitro with tritiated steroids (testosterone, dehydroepiandrosterone, pregnenolone and 17 alpha-hydroxyprogesterone). Labeled metabolites were isolated and identified. Based upon these findings, a pathway of steroid biogenesis in this abnormal gonadal tissue is suggested. The ovotestis studied did not contain all the enzymes involved in ovarian steroidogenesis: 3 beta-hydroxysteroid dehydrogenase, isomerase, 17--20 desmolase and 17 beta-hydroxysteroid dehydrogenase were present, but other important enzymes, such as 16 and 17-hydroxylases, and aromatizing enzyme systems, were deficient or absent.  相似文献   

19.
The enzyme 17beta-hydroxysteroid dehydrogenase is required for the synthesis and 11beta-hydroxysteroid dehydrogenase for the regulation of androgens in rat Leydig cells. This histochemical study describes ontogenetic changes in distribution and intensity of these enzymes in Leydig cells from postnatal day (pnd) 1-90. Using NAD or NADP as the cofactor, 17beta-hydroxysteroid dehydrogenase (substrate: 5-androstene-3beta,17beta-diol) peaks were observed on pnd 16 for fetal Leydig cells and on pnd 19 and 37 for adult Leydig cells. Between pnd 13 and 25 the fetal cells showed a higher intensity for the 17beta-enzyme than the adult cells; more fetal Leydig cells were stained with NADP, whereas more adult cells were positive with NAD on pnd 13 and 16. A nearly identical distribution of 11beta-hydroxysteroid dehydrogenase (substrate: corticosterone) was observed with NAD or NADP as the cofactor; the reaction was present from pnd 31 onwards, first in a few adult Leydig cells and later in almost all these cells homogeneously. The ontogenetic curves of the two enzymes show an inverse relationship. To conclude: (1) Generally, a stronger reaction for 17beta-hydroxysteroid dehydrogenase is shown with NAD as cofactor than with NADP; using NADP, fetal Leydig cells show a stronger staining than adult Leydig cells. (2) The data possibly support the notion of a new isoform of 11beta-hydroxysteroid dehydrogenase in addition to types 1 and 2.  相似文献   

20.
The in vivo effects of gestrinone (R2323) and medroxyprogesterone acetate (MPA) on the estrogen production by rat ovaries were investigated. Hypophysectomized immature female rats treated with 2.5 or 5 IU of pregnant mare serum gonadotropin (PMS) were daily given vehicle only, gestrinone (0.5 mg/kg body weight) or MPA (10 mg/kg body weight), and the activities of 3 beta-hydroxysteroid dehydrogenase, 17 alpha-hydroxylase, 17, 20-lyase, 17 beta-hydroxysteroid dehydrogenase and aromatase in ovaries of these rats were measured. Gestrinone suppressed the 3 beta-hydroxysteroid dehydrogenase activity and increased activities of 17 alpha-hydroxylase, 17, 20-lyase and aromatase in ovaries stimulated by 5 IU of PMS, while MPA suppressed activities of 17 alpha-hydroxylase and aromatase in these ovaries. On the other hand, the aromatase activity in ovaries stimulated by 2.5 IU of PMS was suppressed by gestrinone and increased by MPA, and neither gestrinone nor MPA affected the production of aromatizable androgens from progesterone by these ovaries. Thus, gestrinone and MPA administrated in vivo showed divergent influences on steroidogenic enzyme activities in ovaries, but they did not affect the serum concentration of estradiol-17 beta. The present results suggest that neither gestrinone nor MPA reduced estrogen production by the rat ovary under the gonadotropin stimulation although they influenced some process of its steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号