首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of glycocalyx formation by the trilaminar membrane was investigated at the subcellular level by use of cultivated cancer cells derived from a human stomach adenocarcinoma. Glycocalyx was apparently synthesized on the characteristic trilaminar membrane of Golgi-derived vesicles which gave rise to cytoplasmic vacuoles which, in turn, fused to form an intracytoplasmic cyst. Characteristic microvilli similar to those of intestinal epithelium extended from the membrane lining the intracytoplasmic cyst. These ultrastructural features agree with earlier histochemical findings in suggesting intestinal metaplasia in the origin of the gastric tumor. The morphologic features of the cancer cells clearly indicated that glycoprotein is first synthesized in the Golgi complex and fully formed mucoprotein then emerges as membrane-bound glycocalyx in the vesicles budding from the Golgi stacks. The glycocalyx layer is an integral part of the external leaflet of the characteristic trilaminar membrane. Abundant deposits of glycocalyx in the intracytoplasmic cyst constituted the ultrastructural basis for a distinctive type of signet ring cell that differed from mucous signet ring cells derived from goblet cells.  相似文献   

2.
Superficial cells of the oral mucosal epithelium in the carp and the cytoskeleton of the epithelial cells are examined by scanning and transmission electron microscopy. Microridges are formed on the surface of the epithelium. Epithelial cells contain two types of vesicles: mucous secretory vesicles and coated vesicles. Most of the mucous vesicles are situated in the center of the cell near the Golgi apparatus. In freeze-fracture replicas, intramembranous particles are abundant in the membranes of the secretory vesicles but rare in the apical plasma membrane. Coated vesicles are situated in the apical and subapical cytoplasm. A great number of thick filaments, considered to be keratin filaments, run randomly throughout the cell to form a meshwork. Thick filaments, which are sparse in the central cytoplasm, are connected to the membranes of the secretory vesicles and other membranous organelles. A layer of closely packed thin filaments, considered to be actin filaments, is found just beneath the apical plasma membrane. Microtubules also occur in the apical cytoplasm and run almost parallel to the cell surface. Both kinds of vesicles are connected to the thin and thick filaments. Their functional significance in the regulation of membrane at the free surface is discussed.  相似文献   

3.
The organization of the stomach in the compound styelid ascidian, Polyandrocarpa misakiensis, is described, and the morphology and cell types of the stomach is discussed from the phylogenetic viewpoint. The stomach is a sac-like organ whose wall is formed into longitudinal folds. The stomach consists of external and internal epithelium. The internal epithelium is simple columnar, except for the bottom of the folds. There are five cell types: absorptive cells, zymogenic cells, endocrine cells, ciliated mucous cells, and undifferentiated cells. The absorptive cells have numerous microvilli. The apical region of these cells is occupied by coated vesicles. The zymogenic cells have a conical outline and a few microvilli on their apical surfaces. There are secretory granules in the apical region of zymogenic cells. The endocrine cells have low cell height and electron-dense granules around the nucleus. Endocrine cells have one or two cilia and a few microvilli on the apical surfaces. The basolateral part of these cells often bulges into the adjoining cells. Immunoelectron microscopy revealed that some endocrine cells have serotonin-like immunoreactivity. The ciliated mucous cells are restricted to a single ventral groove. They have numerous microvilli and a few cilia on their apical surfaces. Moderately electron-dense granules are accumulated in the apical part of the ciliated mucous cells. Undifferentiated cells, filled with free ribosomes, form a pseudostratified epithelium in the base of each fold. The nucleus of undifferentiated cells has a prominent nucleolus. The pseudostratified epithelium of the pyloric caecum consists of electron-dense and electron-light cells.  相似文献   

4.
Ultrastructure of human labial salivary glands. I. Acinar secretory cells   总被引:4,自引:0,他引:4  
The structure of human labial salivary gland acini was studied by light and electron microscopy. Contrary to previous reports, these glands were pure mucous in nature; no serous elements were present. The acinar cells were found in all stages of maturation. Immature cells were characterized by an extensive and highly organized rough-surfaced endoplasmic reticulum. The Golgi complex was extremely prominent, consisting of stacks of flattened cisternae and swarms of small vesicles. Mucous droplets were almost completely absent. As secretory activity progressed, the endoplasmic reticulum involuted, while the Golgi cisternae became distended and formed many vacuoles. In mature mucous cells, the apical cytoplasm was filled with membrane-bounded mucous droplets, and the nucleus was displaced basally. The droplets frequently showed great variation in density from cell to cell, and even within the same cell they sometimes were quite heterogeneous. They were liberated from the acinar cells by an apocrine process, so that droplets with intact limiting membranes were often observed in the acinar lumen. These droplets soon lysed, their contents fusing into streams of mucus. Occasionally during apocrine secretion a mucous cell failed to reconstitute its apical surface, and its entire contents spilled into the acinar lumen. Unusual cytoplasmic inclusions were present in many of the acinar cells. These inclusions, which were surrounded by a single membrane, consisted of lipid droplets closely associated with bundles of fine filaments.  相似文献   

5.
By means of histochemical revealing of zinc and applying radioactive isotope 65Zn accumulation, absorption and distribution of cations of this metal in the mucous membrane of the iliac intestine have been studied in chicken, normal, at ischemia and at A-avitaminosis. An essential zinc-depositing ability is peculiar to coverings of mucus upon the intestine epithelium, and among intracellular components--to smooth endoplasmic reticulum. A-avitaminosis and especially ischemia result in increasing permeability of the apical part of the external membrane of epitheliocytes, in overloading of the latter with zinc cations, when they are introduced into the intestine, as well as in decreasing transepithelial transport of zinc. The changes mentioned are accompanied with certain disturbances in the barrier function of the intestinal epithelium.  相似文献   

6.
The caecal epithelium of Calicotyle kröyeri consists of a single cell type which functions in the uptake and intracellular digestion of host epidermis and associated mucus. Each cell is columnar with a small basal nucleus and prominent nucleolus. Perinuclear cytoplasm contains narrow profiles of GER and mitochondria with numerous cristae. Golgi complexes are small and indistinct. Most of the cell is filled with vacuoles of heterogeneous content, the largest occupying the cell apex. There is in each cell an apical endocytotic complex comprising cell surface lamellae, apical vesicles and numerous tubular invaginations of the plasmalemma. The limiting membrane of all these components is structurally modified and bears a highly organized array of peg-like structures on its luminal surface. The complex is capable of ingesting particulate food material from the gut lumen for transfer, via vesicles, to the vacuoles for digestion. Most of the vacuoles represent the digestive elements of the cell and, histochemically, are reactive for protein, mucus and carboxylic esterases. Indigestible residues and lipid droplets accumulate in the large apical vacuole and are periodically released to the lumen by exocytosis. Small, undifferentiated caecal cells were occasionally observed in the epithelium, but their development has not been recorded.  相似文献   

7.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

8.
Summary This study showed that the olfactory mucus is a highly structured extracellular matrix. Several olfactory epithelial glycoconjugates in the frog Rana pipiens were localized ultrastructurally using rapid-freeze, freeze-substitution and post-embedding (Lowicryl K11M) immunocytochemistry. Two of these conjugates were obtained from membrane preparations of olfactory cilia, the glycoproteins gp95 and olfactomedin. The other conjugates have a carbohydrate group which in the olfactory bulb appears to be mostly on neural cell-adhesion molecules (N-CAMs); in the olfactory epithelium this carbohydrate is present on more molecules. Localization of the latter conjugates was determined with monoclonal antibodies 9-OE and 5-OE. Ultrastructurally all antigens localized in secretory granules of apical regions of frog olfactory supporting cells and in the mucus overlying the epithelial surface, where they all had different, but partly overlapping, distributions. Monoclonal antibody 18.1, to gp95, labeled the mucus throughout, whereas poly- and monoclonal anti-olfactomedin labeled a deep mucous layer surrounding dendritic endings, proximal parts of cilia, and supporting cell microvilli. Labeling was absent in the superficial mucous layer, which contained the distal parts of the olfactory cilia. Monoclonal antibody 9-OE labeled rather distinct areas of mucus. These areas sometimes surrounded dendritic endings and olfactory cilia. Monoclonal antibody 5-OE labeled membranes of dendritic endings and cilia, and their glycocalyces, and also dendritic membranes.  相似文献   

9.
Summary The following five cell types have been recognized and defined on the basis of their fine structure in the gastric epithelium of B. schlosseri: vacuolated and zymogenic cells (described in a previous paper); ciliated mucous, endocrine and plicated cells. The ciliated mucous cells are distributed at the apex and the bottom of the gastric folds and along the dorsal groove. The mucus droplets appear to form from the Golgi complex as secretory granules of variable density and texture, which are released from the cell after fusion of their membranes with the apical plasma membrane. Holocrine or apocrine secretion has not been observed. The endocrine cells are scattered and are characterized by electron dense granules, especially numerous in the basal region of the cell. Finally, the plicated cells, present in the pyloric caecum, show rod-like microvilli, a well developed Golgi complex and abundant, deep infoldings of the basal plasma membrane, which are associated with numerous mitochondria. The possible role of the gastric cell types is discussed taking into account information concerning morphologically similar cells in other animals, as well as previously reported data on the biochemistry and physiology of digestion and excretion in ascidians.The authors are grateful to Mr. G. Tognon for technical help and to the Staff of the Stazione Idrobiologica di Chioggia for their assistance in collecting material. Work supported by a C.N.R. Grant from the Istituto di Biologia del Mare, Venezia, Contract n. 71.00396/04.115.542.  相似文献   

10.
The distal wall of the groove between the rat forestomach and glandular stomach is lined with a special type of columnar cells (CCGG) and with fibrillovesicular cells (FVC). The cardiac glands contain cardiac mucosa (CMC) and serous cells (CSC). The CCGG contain small mucous granules and special vesicles and tubules. The CMC are filled with large mucous granules and resemble mucous neck cells. The CSC are filled with large proteinaceous granules. The FVC are characterized by long microvilli, apical bundles of microfilaments and a complex "tubulovesicular system". The pattern of 3H-thymidine incorporation and the presence of immature and transitional forms indicate a possible origin of all the cell types concerned from a common undifferentiated precursor. The membranes of the tubulovesicular system of FVC as well as the apical cell membrane were reactive to Thiéry's carbohydrate stain. However, lanthanum tracing of the extracellular space and ultrastructural stereoscopy did not reveal a permanent continuity between both membrane systems. The absence of 3H-thymidine label showed that FVC were not proliferative. The structural characteristics of FVC do not account for a secretory, resorptive or receptive function. The special arrangement of microfilaments and the tubulovesicular system suggests an ability to fast changes in surface area.  相似文献   

11.
Summary The principal cells of the epithelium in the small intestine of the marsupial Perameles nasuta were studied with the electron microscope. The cells in the lower parts of the crypts are undifferentiated and have a high nucleo-cytoplasmic ratio and an abundance of free ribosomes. As the cells move upwards to take their place in the surface epithelium covering the mucosal folds their nucleo-cytoplasmic ratio and the number of free ribosomes decrease, the cells elongate and develop a brush border, a system of microtubules in the apical cytoplasm, a terminal web, terminal bars and desmosomes.The brush border develops from a series of cell processes interdigitating with those from the opposite cell. Spaces arising between the cell processes gradually separate the contiguous cells and the cell processes become microvilli which increase in number and become uniform in size and shape. The Golgi complex gives rise to small vesicles with a different membrane structure than that of the Golgi membranes themselves. It is suggested that the microtubules do not arise as tubular invaginations of the surface membrane but that they develop from the Golgi vesicles.  相似文献   

12.
Synopsis On examination with ultrastructural methods for visualizing thevicinal glycols and acid groups of complex carbohydrates, the most superficial surface epithelium of the rat gastric corpus displayed biphasic mucous droplets consisting of a cortex of hexose-rich (i.e. periodate-reactive) neutral mucosubstance and an uncharacterized denser core plus monophasic droplets with the neutral mucosubstance. In many surface epithelial cells of the foveolae, the biphasic and monophasic droplets with the neutral mucosubstance intermingled in varying proportions with monophasic droplets showing uniform periodate reactivity, a variable degree of dialyzed ironbinding—demonstrative of acidic glycoconjugate, and high iron—diamine affinity—demonstrative of sulphomucin. Deep foveolar epithelium displayed only monophasic droplets, most of which contained acidic periodate-reactive complex carbohydrate. Underiying cells, designated isthmus cells, exhibited monophasic or occasional biphasic granules containing sulphated, hexose-rich mucosubstance. Nascent droplets or granules near the Golgi zone differed from the mature organelles in the distribution of the glycoconjugate. Mucous neck cells occupied a deeper stratum and displayed a uniform population of monophasic mucous droplets with a loose meshwork of neutral mucosubstance.Techniques for demonstrating hexoses ultrastructurally stained all Golgi cisternae in the mucigenic epithelium, showing increasing reactivity toward the maturing face. Distinctive cistemae with moderate reactivity in the Golgi complex of isthmus cells were interpreted as GERL. Acidic mucosubstances were visualized only in the inner, mature cisternae of the Golgi complex of cells storing acidic glycoconjugates, and not in cisternae interpretable as GERL.The apical plasmalemma of isthmus cells uniquely exhibited abundant sulphated glycoconjugate and that of parietal cells revealed a less prominent, periodic neutral mucosubstance. Lateral and basal plasmalemmae varied from unstained to slightly reactive; basement membranes showed moderate reactivity with methods for visualizing complex carbohydrates. Abundance of glycogen further characterized surface epithelial cells of the corpus and of some parietal cells  相似文献   

13.
Homeostatic cell physiology is preserved through the fidelity of the cell membranes restitution. The task is accomplished through the assembly of the precisely duplicated segments of the cell membranes, and transport to the site of their function. Here we examined the mechanism that initiates and directs the restitution of the intra- and extracellular membranes of gastric mucosal cell. The homeostatic restitution of gastrointestinal epithelial cell membrane components was investigated by studying the lipidomic processes in endoplasmic reticulum (ER) and Golgi. The biomembrane lipid synthesis during the formation of transport vesicles in the systems containing isolated organelle and the cell-specific cytosol (Cyt) from rat gastric mucosal epithelial cells was assessed. The results revealed that lipids of ER transport vesicle and the transmembrane and intravesicular cargo are delivered en bloc to the point of destination. En bloc delivery of proteins, incorporated into predetermined in ER lipid environment, ensures fidelity of the membrane modification in Golgi and the restitution of the lipid and protein elements that are consistent with the organelle and the cell function. The mechanism that maintains apical membrane restitution is mediated through the synthesis of membrane segments containing ceramide (Cer). The Cer-containing membranes and protein cargo are further specialized in Golgi. The portion of the vesicles destined for apical membrane renewal contains glycosphingolipids and phosphatidylinositol 3-phosphate. The vesicles containing phosphatidylinositol 4-phosphate are directed to endosomes. Our findings revealed that the preservation of the physiological equilibrium in cell structure and function is attributed to (1) a complete membrane segment synthesis in ER, (2) its transport in the form of ER-transport vesicle to Golgi, (3) the membrane components-defined maturation of lipids and proteins in Golgi, and (4) en bloc transfer of the new segment of the membrane to the cell apical membrane or intracellular organelle.  相似文献   

14.
The molecular identity of the apical HCO3(-)-secreting transporter in gastric mucous cells remains unknown despite its essential role in preventing injury and ulcer by gastric acid. Here we report the identification of a Cl-/HCO3- exchanger that is located on apical membranes of gastric surface epithelial cells. RT-PCR studies of mouse gastrointestinal tract mRNAs demonstrated that this transporter, known as anion exchanger isoform 4 (AE4), is expressed in both stomach and duodenum. Northern blot analysis of RNA from purified stomach epithelial cells indicated that AE4 is expressed at higher levels in mucous cells than in parietal cells. Immunoblotting experiments identified AE4 as a approximately 110- to 120-kDa protein in membranes from stomach epithelium and apical membranes from duodenum. Immunocytochemical staining demonstrated that AE4 is expressed in apical membranes of surface cells in both mouse and rabbit stomach and duodenum. Functional studies in oocytes indicated that AE4 functions as a Cl-/HCO3- exchanger. These data show that AE4 is an apical Cl-/HCO3- exchanger in gastric mucous cells and duodenal villus cells. On the basis of its function and location, we propose that AE4 may play an important role in mucosal protection.  相似文献   

15.
Urothelial plaques are specialized membrane domains in urothelial superficial (umbrella) cells, composed of highly ordered uroplakin particles. We investigated membrane compartments involved in the formation of urothelial plaques in mouse umbrella cells. The Golgi apparatus did not contain uroplakins organized into plaques. In the post-Golgi region, three distinct membrane compartments containing uroplakins were characterized: i) Small rounded vesicles, located close to the Golgi apparatus, were labelled weakly with anti-uroplakin antibodies and they possessed no plaques; we termed them "uroplakin-positive transporting vesicles" (UPTVs). ii) Spherical-to-flattened vesicles, termed "immature fusiform vesicles" (iFVs), were uroplakin-positive in their central regions and contained small urothelial plaques. iii) Flattened "mature fusiform vesicles" (mFVs) contained large plaques, which were densely labelled with anti-uroplakin antibodies. Endoytotic marker horseradish peroxidase was not found in these post-Golgi compartments. We propose a detailed model of de novo urothelial plaque formation in post-Golgi compartments: UPTVs carrying individual 16-nm particles detach from the Golgi apparatus and subsequently fuse into iFV. Concentration of 16-nm particles into plaques and removal of uroplakin-negative membranes takes place in iFVs. With additional fusions and buddings, iFVs mature into mFVs, each carrying two urothelial plaques toward the apical surface of the umbrella cell.  相似文献   

16.
The subcellular distribution of sialyltransferase and its product of action, sialic acid, was investigated in the undifferentiated cells of the rat intestinal crypts and compared with the pattern observed in the differentiated cells present in the surface epithelium. Sialyltransferase was immunocytochemically detected with an antibody, affinity-purified on a beta-galactosidase/sialyltransferase fusion protein, which recognizes only protein epitopes of the enzyme. A similar pattern and intensity of immunolabeling were observed in the Golgi apparatus, apical and basolateral plasma membranes of both undifferentiated and differentiated absorptive cells. However, in the goblet cells, the mucus was only weakly labeled in cells present in the basal portion of the crypts but increased in intensity through the zone of migration to the surface epithelium. Sialic acid as detected with the Limax flavus lectin was observed in the Golgi apparatus and post-Golgi apparatus structures of both absorptive and goblet cells regardless of their position along the crypt-to-surface epithelium axis. However, a striking difference in the plasma membrane distribution of sialic acid existed between undifferentiated cells of the lower half of the crypts and those of the upper half and the surface epithelium: in the former, label was present in both the apical and basolateral domain, whereas in the latter it became restricted to the apical domain. These results suggest that the presence of sialyltransferase immunoreactivity in the goblet cell mucus and the polarization of sialic acid to the apical plasma membrane of both goblet and absorptive cells may be markers for the differentiated state.  相似文献   

17.
18.
After ovulation the egg membrane of the pelled consists of 3 layers. The homogeneous electron-dense layer comprising its major mass zona radiata, is laid as early as the stage of protoplasmatic growth of the oocyte as a result of accumulation of an electron-dense substance of a high electron density in the basement of the oocyte microvilli. The next, pectinate layer is formed from the highly electron-dense substance formed in the vacuoli of the follicular cell Golgi complex released into the subfollicular space. The most external layer - a fibrous layer - is formed due to release of large vacuoles, formed in the apical area of the follicular cells not long before ovulation. The obtained data suggest a great role of the follicular epithelium in the formation of egg membranes of the pelled.  相似文献   

19.
The transverse distribution of phospholipids in the membranes of subfractions of the Golgi complex was investigated by using phospholipase C and 2,4,6-trinitrobenzenesulphonic acid as probes. In trans-enriched Golgi membranes, 26% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate or for hydrolysis by phospholipase C, and 72% of the phosphatidylcholine is hydrolysed by phospholipase C. In cis-enriched Golgi membranes, 45% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate and for hydrolysis by phospholipase C, and 95% of the phosphatidylcholine is hydrolysed by phospholipase C. Under the conditions used with either probe the contents of the Golgi vesicles labelled with either [3H]palmitic acid or [14C]leucine were retained. Galactosyltransferase activity of the membrane vesicles was partially inhibited by the experimental procedures used to investigate the transverse distribution of phospholipids. However, the residual activity was latent, suggesting that the vesicles remained closed. Trinitrobenzenesulphonic acid caused no detectable morphological change in either Golgi fraction. Phospholipase C treatment caused morphological changes, including fusion of vesicles and the appearance of 'signet-ring' profiles in some vesicles; however, the vesicles remained closed and the bilayer was retained. It appears, therefore, that neither probe causes major disruption of the Golgi vesicles nor gains access to the inner surface of the membrane bilayer. These observations suggest that phospholipids have a transverse asymmetry in Golgi membranes, that this distribution differs in trans and cis membranes, and that the phospholipid structure of Golgi membranes is inconsistent with a simple flow of membrane bilayer from endoplasmic reticulum to Golgi membranes to plasma membrane.  相似文献   

20.
This report provides information on the morphology of rat intestinal epithelial cells during fat absorption. In addition, the role of protein metabolism in this process has been evaluated by blocking its synthesis with puromycin and studying the fine structure of mucosal cells from rats at various times after fat intubation. The results indicate that SER-derived vesicles, containing fat droplets, migrate from the apical cytoplasm of the absorptive cell and fuse with saccules or vacuoles of the Golgi complex. Arguments are made that the Golgi complex is important in completing chylomicron formation and in providing appropriate enveloping membranes for the chylomicron. Such membranes may be necessary for Golgi vacuoles to fuse with the lateral cell membranes and release chylomicra. Puromycin treatment causes the absorptive cell to accumulate increased quantities of lipid that are devoid of membrane during fat absorption. In addition, puromycin-treated cells contain much less RER and Golgi membranes are strikingly decreased in number. In this paper we discuss the consequences of these abnormalities and suggest that continued protein synthesis by the RER is required in order to generate Golgi membranes. If such membranes are absent the cell's ability to discarge chylomicra is impaired and lipid accumulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号