首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The replication terminus region of the Escherichia coli chromosome encodes a locus, dif, that is required for normal chromosome segregation at cell division. dif is a substrate for site-specific recombination catalysed by the related chromosomally encoded recombinases XerC and XerD. It has been proposed that this recombination converts chromosome multimers formed by homologous recombination back to monomers in order that they can be segregated prior to cell division. Strains mutant in dif, xerC or xerD share a characteristic phenotype, containing a variable fraction of filamentous cells with aberrantly positioned and sized nucleoids. We show that the only DNA sequences required for wild-type dif function in the terminus region of the chromosome are contained within 33 bp known to bind XerC and XerD and that putative active site residues of the Xer recombinases are required for normal chromosome segregation. We have also shown that recombination by the loxP/Cre system of bacteriophage P1 will suppress the phenotype of a dif deletion strain when loxP is inserted in the terminus region. Suppression of the dif deletion phenotype did not occur when either dif/Xer or loxP/Cre recombination acted at other positions in the chromosome close to oriC or within lacZ, indicating that site-specific recombination must occur within the replication terminus region in order to allow normal chromosome segregation.  相似文献   

2.
Bacterial chromosome partitioning and cell division are tightly connected cellular processes. We show here that the Caulobacter crescentus FtsK protein localizes to the division plane, where it mediates multiple functions involved in chromosome segregation and cytokinesis. The first 258 amino acids of the N terminus are necessary and sufficient for targeting the protein to the division plane. Furthermore, the FtsK N terminus is required to either assemble or maintain FtsZ rings at the division plane. The FtsK C terminus is essential in Caulobacter and is involved in maintaining accurate chromosome partitioning. In addition, the C-terminal region of FtsK is required for the localization of the topoisomerase IV ParC subunit to the replisome to facilitate chromosomal decatenation prior to cell division. These results suggest that the interdependence between chromosome partitioning and cell division in Caulobacter is mediated, in part, by the FtsK protein.  相似文献   

3.
XerC is a site-specific recombinase of the bacteriophage lambda integrase family that is encoded by xerC at 3700 kbp on the genetic map of Escherichia coli. The protein was originally identified through its role in converting multimers of plasmid ColE1 to monomers; only monomers are stably inherited. Here we demonstrate that XerC also has a role in the segregation of replicated chromosomes at cell division. xerC mutants form filaments with aberrant nucleotides that appear unable to partition correctly. A DNA segment (dif) from the replication terminus region of the E. coli chromosome binds XerC and acts as a substrate for XerC-mediated site-specific recombination when inserted into multicopy plasmids. This dif segment contains a region of 28 bp with sequence similarity to the crossover region of ColE1 cer. The cell division phenotype of xerC mutants is suppressed in strains deficient in homologous recombination, suggesting that the role of XerC/dif in chromosomal metabolism is to convert any chromosomal multimers (arising through homologous recombination) to monomers.  相似文献   

4.
In Bacillus subtilis, chromosome dimers that block complete segregation of sister chromosomes arise in about 15% of exponentially growing cells. Two dedicated recombinases, RipX and CodV, catalyze the resolution of dimers by site-specific recombination at the dif site, which is located close to the terminus region on the chromosome. We show that the two DNA translocases in B. subtilis, SftA and SpoIIIE, synergistically affect dimer resolution, presumably by positioning the dif sites in close proximity, before or after completion of cell division, respectively. Furthermore, we observed that both recombinases, RipX and CodV, assemble on the chromosome at the dif site throughout the cell cycle. The preassembly of recombinases probably ensures that dimer resolution can occur rapidly within a short time window around cell division.  相似文献   

5.
The E. coli chromosome replication arms are polarized by motifs such as RRNAGGGS oligomers, found preferentially on leading strands. Their skew increases regularly from the origin to dif (the site in the center of the terminus where chromosome dimer resolution occurs), to reach a value of 90% near dif. Convergent information indicates that polarization in opposite directions from the dif region controls tightly the activity of dif, probably by orienting mobilization of the terminus at cell division. Another example of polarization is the presence, in the region peripheral to the terminus, of small non-divisible zones whose inversion interferes with spatial separation of sister nucleoids. The two phenomena may contribute to the organization of the Ter macrodomain.  相似文献   

6.
We studied the segregation of the replication terminus of the Escherichia coli chromosome by time-lapse and still photomicroscopy. The replicated termini lie together at the cell centre. They rapidly segregate away from each other immediately before cell division. At fast growth rate, the copies move progressively and quickly toward the centres of the new-born cells. At slow growth rate, the termini usually remain near the inner cell pole and migrate to the cell centre in the middle of the cell cycle. A terminus domain of about 160kb, roughly centred on the dif recombination site, segregated as a unit at cell division. Sequences outside this domain segregated before division, giving two separate foci in predivision cells. Resolution of chromosome dimers via the terminus dif site requires the XerC recombinase and an activity of the FtsK protein that is thought to align the dif sequences at the cell centre. We found that anchoring of the termini at the cell centre and proper segregation at cell division occurred normally in the absence of recombination via the XerC recombinase. Anchoring and proper segregation were, however, frequently disrupted when the C-terminal domain of FtsK was truncated.  相似文献   

7.
In Escherichia coli, chromosome dimers are generated by recombination between circular sister chromosomes. Dimers are lethal unless resolved by a system that involves the XerC, XerD and FtsK proteins acting at a site (dif) in the terminus region. Resolution fails if dif is moved from its normal position. To analyse this positional requirement, dif was transplaced to a variety of positions, and deletions and inversions of portions of the dif region were constructed. Resolution occurs only when dif is located at the convergence of multiple, oppositely polarized DNA sequence elements, inferred to lie in the terminus region. These polar elements may position dif at the cell septum and be general features of chromosome organization with a role in nucleoid dynamics.  相似文献   

8.
Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the 'bottom' strand. The resulting recombinase-DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD-FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.  相似文献   

9.
The dif locus is a site-specific recombination site located within the terminus region of the chromosome of Escherichia coli. Recombination at dif resolves circular dimer chromosomes to monomers, and this recombination requires the XerC, XerD and FtsK proteins, as well as cell division. In order to characterize other enzymes that interact at dif, we tested whether quinolone-induced cleavage occurs at this site. Quinolone drugs, such as norfloxacin, inhibit the type 2 topoisomerases, DNA gyrase and topoisomerase IV, and can cleave DNA at sites where these enzymes interact with the chromosome. Using strains in which either DNA gyrase or topoisomerase IV, or both, were resistant to norfloxacin, we determined that specific interactions between dif and topoisomerase IV caused cleavage at that site. This interaction required XerC and XerD, but did not require the C-terminal region of FtsK or cell division.  相似文献   

10.
Genome duplication and segregation normally are completed before cell division in all organisms. The temporal relation of duplication and segregation, however, can vary in bacteria. Chromosomal regions can segregate towards opposite poles as they are replicated or can stay cohered for a considerable period before segregation. The bacterium Vibrio cholerae has two differently sized circular chromosomes, chromosome I (chrI) and chrII, of about 3 and 1 Mbp, respectively. The two chromosomes initiate replication synchronously, and the shorter chrII is expected to complete replication earlier than the longer chrI. A question arises as to whether the segregation of chrII also is completed before that of chrI. We fluorescently labeled the terminus regions of chrI and chrII and followed their movements during the bacterial cell cycle. The chrI terminus behaved similarly to that of the Escherichia coli chromosome in that it segregated at the very end of the cell division cycle: cells showed a single fluorescent focus even when the division septum was nearly complete. In contrast, the single focus representing the chrII terminus could divide at the midcell position well before cell septation was conspicuous. There were also cells where the single focus for chrII lingered at midcell until the end of a division cycle, like the terminus of chrI. The single focus in these cells overlapped with the terminus focus for chrI in all cases. It appears that there could be coordination between the two chromosomes through the replication and/or segregation of the terminus region to ensure their segregation to daughter cells.  相似文献   

11.
The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK γ regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region ( ter ) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif , located within ter . The frequency of chromosome dimer formation is ∼15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of ∼70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre– loxP recombination replaces XerCD– dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter .  相似文献   

12.
We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie in the nucleoid, and the terminus region from the cell centre. Segregation appears to leave one copy of each locus in place, and rapidly transport the other to the other side of the cell centre.  相似文献   

13.
dif (deletion induced filamentation) is a newly identified locus that lies within the terminus region of the Escherichia coli chromosome. The Dif phenotype was characterized by a subpopulation of filamentous cells with abnormal nucleoids and induction of the SOS repair system. Interactions between dif-carrying plasmids as well as between such plasmids and the bacterial chromosome demonstrated that dif is a cis-acting, recA-independent recombination site. Filamentation continued in dif mutants in which SOS-associated division inhibitors were inoperative, which showed that induction of these inhibitors was not the primary cause of filamentation. Filamentation was not observed in dif recA or dif recBC mutants, which were unable to carry out homologous recombination. The dif site shows homology with the cer site of plasmid ColE1, which resolves plasmid multimers to monomers. It is proposed that dif functions to resolve dimeric chromosomes produced by sister chromatid exchange, and that the Dif phenotype is due to the inability of these mutants to resolve multimers prior to cell division.  相似文献   

14.
The FtsK translocase pumps dsDNA directionally at ~5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.  相似文献   

15.
Escherichia coli FtsK protein couples cell division and chromosome segregation. It is a component of the septum essential for cell division. It also acts during chromosome dimer resolution by XerCD-specific recombination at the dif site, with two distinct activities: DNA translocation oriented by skewed sequence elements and direct activation of Xer recombination. Dimer resolution requires that the skewed elements polarize in opposite directions 30-50 kb on either side of dif. This constitutes the DIF domain, approximately coincident with the region where replication terminates. The observation that the ftsK1 mutation increases recombination near dif was exploited to determine whether the chromosome region on which FtsK acts is limited to the DIF domain. A monitoring of recombination activity at multiple loci in a 350 kb region to the left of dif revealed (i) zones of differing activities unconnected to dimer resolution and (ii) a constant 10-fold increase of recombination in the 250 kb region adjacent to dif in the ftsK1 mutant. The latter effect allows definition of an FTSK domain whose total size is at least fourfold that of the DIF domain. Additional analyses revealed that FtsK activity responds to polarization in the whole FTSK domain and that displacement of the region where replication terminates preserves differences between recombination zones. Our interpretation is that translocation by FtsK occurs mostly on DNA belonging to a specifically organized domain of the chromosome, when physical links between either dimeric or still intercatenated chromosomes force this DNA to run across the septum at division.  相似文献   

16.
Despite extensive research over several decades, a comprehensive view of how the Escherichia coli chromosome is organized within the nucleoid, and how two daughter chromosomes segregate has yet to emerge. Here we investigate the role of the MatP, ZapA and ZapB proteins in organizing the replication terminus (Ter) region and in the chromosomal segregation process. Quantitative image analysis of the fluorescently labeled Ter region shows that the replication terminus attaches to the divisome in a single segment along the perimeter of the cell in a MatP, ZapA and ZapB-dependent manner. The attachment does not significantly affect the bulk chromosome segregation in slow growth conditions. With or without the attachment, two chromosomal masses separate from each other at a speed comparable to the cell growth. The separation starts even before the replication terminus region positions itself at the center of the nucleoid. Modeling of the segregation based on conformational entropy correctly predicts the positioning of the replication terminus region within the nucleoid. However, the model produces a distinctly different chromosomal density distribution than the experiment, indicating that the conformational entropy plays a limited role in segregating the chromosomes in the late stages of replication.  相似文献   

17.
Previous genetic analyses of the Caulobacter crescentus chromosome have resulted in the construction of a linear genetic map. To establish the circularity of the C. crescentus chromosome, restriction fragments generated by digestion with AseI and SpeI were analyzed by pulsed-field gel electrophoresis and Southern hybridization. The size of each fragment was calculated and used to demonstrate that C. crescentus has a genome size of approximately 4,000 kilobases. In addition, both enzymes gave rise to large DNA fragments which contained genes from both ends of the genetic map. Thus, there is physical linkage between the genes at the ends of the genetic map and the chromosome is circular. Since this region of the chromosome appears to contain the replication terminus, we propose that recombination occurs at a high frequency in the vicinity of the terminus. This high frequency of recombination would prevent genetic linkage from being observed between genes on opposite sides of the terminus. Additional experiments using insertions which introduced new AseI and DraI restriction sites into the genome allowed us to calculate the physical distance between genes located in the vicinity of the replication terminus.  相似文献   

18.
Xer site-specific recombination at the Escherichia coli chromosomal site dif converts chromosomal dimers to monomers, thereby allowing chromosome segregation during cell division. dif is located in the replication terminus region and binds the E. coli site-specific recombinases EcoXerC and EcoXerD. The Haemophilus influenzae Xer homologues, HinXerC and HinXerD, bind E. coli dif and exchange strands of dif Holliday junctions in vitro. Supercoiled dif sites are not recombined by EcoXerC and EcoXerD in vitro, possibly as a consequence of a regulatory process, which ensures that in vivo recombination at dif is confined to cells that can initiate cell division and contain dimeric chromosomes. In contrast, the combined action of HinXerC and EcoXerD supports in vitro recombination between supercoiled dif sites, thereby overcoming the barrier to dif recombination exhibited by EcoXerC and EcoXerD. The recombination products are catenated and knotted molecules, consistent with recombination occurring with synaptic complexes that have entrapped variable numbers of negative supercoils. Use of catalytically inactive recombinases provides support for a recombination pathway in which HinXerC-mediated strand exchange between directly repeated duplex dif sites generates a Holliday junction intermediate that is resolved by EcoXerD to catenated products. These can undergo a second recombination reaction to generate odd-noded knots.  相似文献   

19.
Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication and movement of one of the newly replicated origins to the opposite pole of the cell, indicating the absence of cohesion between the newly replicated origin-proximal parts of the Caulobacter chromosome. The terminus region of the chromosome becomes located at the invaginating septum in predivisional cells, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions and formation of separate nucleoids, which results in trapping of a chromosome on either side of the cell division septum, indicating that there is not a nucleoid exclusion phenotype.  相似文献   

20.
In bacteria, chromosome segregation occurs progressively from the origin to terminus within minutes of replication of each locus. Between replication and segregation, sister loci are held in an apparent cohesive state by topological links. The decatenation activity of topoisomerase IV (Topo IV) is required for segregation of replicated loci, yet little is known about the structuring of the chromosome maintained in a cohesive state. In this work, we investigated chromosome folding in cells with altered decatenation activities. Within minutes after Topo IV inactivation, massive chromosome reorganization occurs, associated with increased in contacts between nearby loci, likely trans-contacts between sister chromatids, and in long-range contacts between the terminus and distant loci. We deciphered the respective roles of Topo III, MatP and MukB when TopoIV activity becomes limiting. Topo III reduces short-range inter-sister contacts suggesting its activity near replication forks. MatP, the terminus macrodomain organizing system, and MukB, the Escherichia coli SMC, promote long-range contacts with the terminus. We propose that the large-scale conformational changes observed under these conditions reveal defective decatenation attempts involving the terminus area. Our results support a model of spatial and temporal partitioning of the tasks required for sister chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号