首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的通过对实验猴细菌性感染疾病脏器病理改变的观察和分析,完善实验猴病理检测资料,为实验动物病理检测标准的制定提供依据。方法选取86例实验猴按5种必检细菌性感染疾病(沙门菌病;志贺菌病;结核杆菌病;小肠结肠炎耶尔森菌病;空肠弯曲菌病)病原种类分组,对脏器标本进行病理剖检,HE染色观察记录病变,建立实验猴必检细菌性疾病病理检测资料。结果病理检测结果显示:沙门菌病表现为伤寒肉芽肿,结核杆菌病表现为结核肉芽肿,小肠结肠炎耶尔森菌病表现为纵行溃疡、急性炎及化脓性肉芽肿;志贺菌病、空肠弯曲菌病表现为急性炎和表浅溃疡。结论感染5种必检细菌的实验猴分别表现出不同的病理变化,病理检测对疾病的分析诊断有重要价值,检测结果补充了实验猴细菌性疾病病理检测资料,为制定实验动物病理检测指南提供了相关依据。  相似文献   

2.
We examined epibenthic and pelagic species of Chaetognatha (Spadellidae and Sagittidae) using immunohistofluorescence and confocal laser scanning microscopy to detect tubulin and cell nuclei in whole-mount preparations and scanning and transmission electron microscopy to visualize the ultrastructural organisation of their ciliary sense organs. All chaetognaths bear three types of ciliary sense organs distributed throughout the body: (1) transversally oriented ciliary fence organs, (2) longitudinally (parallel to the anterior-posterior axis) oriented ciliary tuft organs, and (3) a ciliary loop, the corona ciliata. This study targets the ciliary fence as well as the ciliary tuft organs. Two types of primary receptor cells constitute the ciliary fence and ciliary tuft organs. The first type of receptor cells forms a single cell line along the midline axis of the organs, whereas the second type of receptor cells forms multiple lines of cells at either side of type 1 cells. Each receptor cell extends a single, non-locomotory cilium from its narrow apex collared by slender, non-reinforced microvilli; however, both types of sensory cells considerably differ on ultrastructural level. Type 1 sensory cells have thicker cilia than those protruded by the type 2 sensory cells which are characterized by rootlets consisting of an elongated, amorphous distal as well as a cross-striated proximal portion. These results likely reveal that both types of sensory cells have distinct functions.  相似文献   

3.
Antimicrobial residue deposition can change the physico-chemical properties of bacteria and surfaces and thus promote or impair bacterial adhesion. This study focuses on benzalkonium chloride (BC) deposition on polystyrene (PS) surfaces and the influence of this conditioning film on the physico-chemical properties of PS and on early adhesion and biofilm formation by Pseudomonas aeruginosa wild-type and its laboratory BC-adapted strain. The latter readily acquired the ability to grow in BC, and also exhibited physico-chemical surface changes. The existence of residues on PS surfaces altered their hydrophobicity and favoured adhesion as determined by the free energy and early adhesion characterization. Adapted bacteria revealed a higher ability to adhere to surfaces and to develop biofilms, especially on BC-conditioned surfaces, which thereby could enhance resistance to sanitation attempts. These findings highlight the importance of investigations concerning the antimicrobial deposition effect after cleaning procedures, which may encourage bacterial adhesion, especially of bacteria that have been previously exposed to chemical stresses.  相似文献   

4.
Environmental microbes have the potential to be involved in nearly all behavioural processes. For example, mating systems where males use intromittent organs to transfer sperm to females represent a means by which environmental microbes collected by males can breach entry into females' body cavities during mating. However, the degree to which the acquisition of environmental microbes onto important sex structures alters courtship behaviours remains unknown. Here, we collected bacteria from the copulatory organs of Agelenopsis pennsylvanica funnel‐weaving spiders in situ to test whether exposure to bacteria on copulatory organs can alter hosts' courtship behaviour, reproductive success and survival. We used a standardized assay to repeatedly measure each spider's aggressiveness, a behavioural component of both male courtship and female sexual receptivity. Then, we experimentally altered the bacteria present on male and female spiders' copulatory organs with an application of either (a) a mixture of bacteria collected from conspecifics to increase bacterial presence, (b) an antibiotic to reduce bacterial presence or (c) a procedural control. Each spider was paired with a size‐matched spider of the opposite sex whose copulatory organs were unaltered, and we measured the latency until the onset and the duration of courtship. Spiders were then isolated, and we measured each individual's time until death and female fecundity over the next 40 days. We found that female exposure to bacteria had multiple effects on mating dynamics. Males took over four times longer to begin courting females that had been exposed to bacteria compared to unexposed and antibiotic‐treated females. Only when courting these bacteria‐exposed females, males began courtship sooner when females were more aggressive. Lastly, females whose mate had been exposed to bacteria experienced reduced survival. These data suggest that bacteria present on animals' copulatory organs can alter courtship behaviours, female survivorship, and may potentially play a role in mating dynamics.  相似文献   

5.
Infection of striped mullet (Mugil cephalus) with Aeromonas hydrophila results in an acute septicemic disease. The disease can be experimentally induced by intramuscular injection, skin or gill scarification or by the oral route using pellets purposely seeded with bacteria. The organism was isolated from the blood 1–2 days after infection and from all organs 24 hr or longer after infection. The disease is characterized by early inflammatory and proliferative changes and later necrotic changes. Enteritis and hepatic necrosis are constant findings in aeromonad disease of M. cephalus but surface lesions are not pathognomic for these infections in mullet. Death of infected fish may be attributed to bacterial toxins which cause necrosis of parenchymal organs and soft tissue structure.  相似文献   

6.
A lethal role for lipid A in Salmonella infections   总被引:11,自引:3,他引:8  
Salmonella infections in naturally susceptible mice grow rapidly, with death occurring only after bacterial numbers in vivo have reached a high threshold level, commonly called the lethal load. Despite much speculation, no direct evidence has been available to substantiate a role for any candidate bacterial components in causing death. One of the most likely candidates for the lethal toxin in salmonellosis is endotoxin, specifically the lipid A domain of the lipopolysaccharide (LPS) molecule. Consequently, we have constructed a Salmonella mutant with a deletion–insertion in its waaN gene, which encodes the enzyme that catalyses one of the two secondary acylation reactions that complete lipid A biosynthesis. The mutant biosynthesizes a lipid A molecule lacking a single fatty acyl chain and is consequently less able to induce cytokine and inducible nitric oxide synthase (iNOS) responses both in vivo and in vitro. The mutant bacteria appear healthy, are not sensitive to increased growth temperature and synthesize a full-length O-antigen-containing LPS molecule lacking only the expected secondary acyl chain. On intravenous inoculation into susceptible BALB/c mice, wild-type salmonellae grew at the expected rate of approximately 10-fold per day in livers and spleens and caused the death of the infected mice when lethal loads of approximately 108 were attained in these organs. Somewhat unexpectedly, waaN mutant bacteria grew at exactly the same rate as wild-type bacteria in BALB/c mice but, when counts reached 108 per organ, mice infected with mutant bacteria survived. Bacterial growth continued until unprecedentedly high counts of 109 per organ were attained, when approximately 10% of the mice died. Most of the animals carrying these high bacterial loads survived, and the bacteria were slowly cleared from the organs. These experiments provide the first direct evidence that death in a mouse typhoid infection is directly dependent on the toxicity of lipid A and suggest that this may be mediated via pro-inflammatory cytokine and/or iNOS responses.  相似文献   

7.
Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore apparently precedes acquisition of the symbiotic bacteria. Furthermore, bacterial populations in larval light organs near inception of the symbiosis are genetically diverse, like those of adult fish.  相似文献   

8.
Infectious disease, commonly caused by bacterial pathogens, is now the worlds leading cause of premature death and third overall cause behind cardiovascular disease and cancer. Urinary Tract Infection (UTI), caused by E. coli bacteria, is a very common bacterial infection, a majority in women (85%) and may result in severe kidney failure if not detected quickly. Among hundreds of strains the bacteria, E. coli 0157:H7, is emerging as the most aggressive one because of its capability to produce a toxin causing hemolytic uremic syndrome (HUS) resulting in death, especially in children. In the present study, a project has been undertaken for developing a rapid method for UTI detection in very low bacteria concentration, applying current knowledge of nano-technology. Experiments have been designed for the development of biosensors using nano-fabricated structures coated with elements such as gold that have affinity for biomolecules. A biosensor is a device in which a biological sensing element is either intimately connected to or integrated within a transducer. The basic principle for the detection procedure of the infection is partly based on the enzyme-linked immunosorbent assay system. Anti-E. coli antibody-bound Gold Nanowire Arrays (GNWA) prepared on anodized porous alumina template is used for the primary step followed by binding of the bacteria containing specimen. An alkaline phosphatase-conjugated second antibody is then added to the system and the resultant binding determined by both electrochemical and optical measurements. Various kinds of GNWA templates were used in order to determine the one with the best affinity for antibody binding. In addition, an efficient method for enhanced antibody binding has been developed with the covalent immobilization of an organic linker Dithiobissuccinimidylundecanoate (DSU) on the GNWA surface. Studies have also been conducted to optimize the antibody-binding conditions to the linker-attached GNWA surfaces for their ability to detect bacteria in clinical concentrations. Published in 2004.  相似文献   

9.
Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.  相似文献   

10.
Zooplankton provide microhabitats for bacteria, but factors which influence zooplankton-associated bacterial abundance are not well known. Through a year-long field study, we measured the concentration of free-living bacteria and bacteria associated with the dominant mesozooplankters Acartia tonsa and Balanus sp. Free-living bacteria peaked in the summer, while zooplankton-associated bacteria peaked in summer and winter. No relationships were found between bacterial abundance per individual and zooplankter width, length, surface area or body volume. Multiple regression analyses indicated that free-living and Acartia-associated bacterial concentrations were explained by temperature, salinity, ammonium, chl a, and all term interactions. Balanus-associated bacterial concentration was explained by ammonium and phosphate. Ammonium significantly influenced all sampled bacterial communities. In laboratory experiments, copepods raised under high ammonium concentration had higher bacterial concentrations than those raised under low ammonium condition. Transplant experiments showed that high ammonium favored loosely attached bacteria, whereas low ammonium selected for firmly attached bacteria, suggesting greater exchange between free-living and zooplankton-associated bacterial communities in nutrient-rich systems. Additional sampling of other zooplankton taxa all showed high bacterial concentrations, supporting the notion that zooplankton function as microbial hotspots and may play an important, yet overlooked, role in marine biogeochemical cycles.  相似文献   

11.
Healthy, actively feeding intertidal oysters were removed from an estuarine environment (Pipeclay Lagoon, Tasmania). The epithelial surfaces of various organs of the mantle cavity and alimentary tract were explored by scanning and transmission electron microscopy. All epithelial tissues examined were ciliated, and nearly all were partly covered with secreted mucus. However, microorganisms were seen rarely in the adhesive mucus and never attached to the epithelium. Electron microscopy also failed to demonstrate a surface microflora in emersed oysters which had been incubated at 5 to 25 degrees C for 6 or 24 h. The absence of an internal surface microflora did not vary on a seasonal basis. In laboratory experiments, oysters were allowed to filter feed from seawater containing diverse types of marine bacteria at concentrations of 10(3) to 10(7)/mL. However, no surface microflora could be found within actively feeding oysters or in emersed animals incubated at 20 degrees C for 6 or 24 h. In contrast, surface-associated microorganisms were detected readily by scanning electron microscopy on the external shell of healthy oysters and on various internal tissues in spoiled oysters. It is suggested that the major mechanisms restricting microbial growth within oysters are ciliary movement and mucus secretion.  相似文献   

12.
Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.  相似文献   

13.
The Pycnogonida or sea spiders are exclusively marine invertebrates, numbering about 1,300 described species worldwide. Given their remarkable position in phylogeny as basal chelicerates or even basal euarthropods, the structure of their sense organs can reveal important characters, which—in a comparative framework—provide arguments to phylogenetic discussions and help to develop scenarios of evolutionary transformations. This review summarizes current knowledge and presents new original data on the sense organs in pycnogonids, that is, the eyes, the lateral sense organs and the ciliary or sensillar sense organs. Except for the eyes, there are not many detailed studies available. The ultrastructure of the R‐cells of the four eyes located on the ocular tubercle is described as “pseudoinverted”. The eyes are innervated to two visual neuropils located in the protocerebrum. The features of the lateral sense organ, also located on the ocular tubercle, are hitherto not conclusively resolved, a chemo‐ or thermoreceptive function is suggested. Finally, an overview of the various ciliary or sensillar sense organs distributed all over the body is given and the fine structure of branched setae is shown for the first time. The morphology of the sense organs of pycnogonids is compared with that of other arthropod taxa and assessed against the background of current theories of arthropod evolution.  相似文献   

14.
The molecular pathogenesis of many Staphylococcus aureus infections involves growth of bacteria as biofilm. In addition to polysaccharide intercellular adhesin (PIA) and extracellular DNA, surface proteins appear to mediate the transition of bacteria from planktonic growth to sessile lifestyle as well as biofilm growth, and can enable these processes even in the absence of PIA expression. However, the molecular mechanisms by which surface proteins contribute to biofilm formation are incompletely understood. Here we demonstrate that self‐association of the serine‐aspartate repeat protein SdrC promotes both bacterial adherence to surfaces and biofilm formation. However, this homophilic interaction is not required for the attachment of bacteria to abiotic surfaces. We identified the subdomain that mediates SdrC dimerization and subsequent cell‐cell interactions. In addition, we determined that two adjacently located amino acid sequences within this subdomain are required for the SdrC homophilic interaction. Comparative amino acid sequence analysis indicated that these binding sites are conserved. In summary, our study identifies SdrC as a novel molecular determinant in staphylococcal biofilm formation and describes the mechanism responsible for intercellular interactions. Furthermore, these findings contribute to a growing body of evidence suggesting that homophilic interactions between surface proteins present on neighbouring bacteria induce biofilm growth.  相似文献   

15.
It has been known that ornithine decarboxylase (ODC) induced by the binding of c-Myc to odc gene is closely linked to cell death. Here, we investigated the relationship between their expressions and cell death in macrophage cells following treatment with Salmonella typhimurium or lipopolysaccharide (LPS). ODC expression was increased by bacteria or LPS and repressed by inhibitors against mitogen-activated protein kinases (MAPKs) in Toll-like receptor 4 (TLR4) signaling pathway. In contrast, c-Myc protein level was increased after treatment with bacteria, but not by treatment with LPS or heat-killed bacteria although both bacteria and LPS increased the levels of c-myc mRNA to a similar extent. c-Myc protein level is dependent upon bacterial invasion because treatment with cytochalasin D (CCD), inhibitors of endocytosis, decreased c-Myc protein level. The cell death induced by bacteria was significantly decreased after treatment of CCD or c-Myc inhibitor, indicating that cell death by S. typhimurium infection is related to c-Myc, but not ODC. Consistent with this conclusion, treatment with bacteria mutated to host invasion did not increase c-Myc protein level and cell death rate. Taken together, it is suggested that induction of c-Myc by live bacterial infection is directly related to host cell death.  相似文献   

16.
鲍曼不动杆菌(Acinetobacter baumannii)是引起医院感染的常见致病菌,该细菌不仅容易产生耐药性,而且在人体及无生命物质表面易形成生物膜,临床治疗较为棘手。从临床分离24株鲍曼不动杆菌,药物敏感试验观察这些分离株对常用抗菌药物的敏感性,针对耐碳青霉烯鲍曼不动杆菌,检测是否含有耐药基因碳青霉烯酶基因OXA-23,采用结晶紫染色法观察耐药性与生物膜形成的相关性,并用刀豆蛋白凝集素结合试验及质谱分析耐药性与O-甘露糖蛋白的相关性。结果显示鲍曼不动杆菌耐药性与生物膜形成呈正相关,某些O-甘露糖蛋白表达有利于细菌获得耐药性。  相似文献   

17.
For quantification of bacterial adherence to biomaterial surfaces or to other surfaces prone to biofouling, there is a need for methods that allow a comparative analysis of small material specimens. A new method for quantification of surface-attached biotinylated bacteria was established by in situ detection with fluorescence-labeled avidin-D. This method was evaluated utilizing a silicon wafer model system to monitor the influences of surface wettability and roughness on bacterial adhesion. Furthermore, the effects of protein preadsorption from serum, saliva, human serum albumin, and fibronectin were investigated. Streptococcus gordonii, Streptococcus mitis, and Staphylococcus aureus were chosen as model organisms because of their differing adhesion properties and their clinical relevance. To verify the results obtained by this new technique, scanning electron microscopy and agar replica plating were employed. Oxidized and poly(ethylene glycol)-modified silicon wafers were found to be more resistant to bacterial adhesion than wafers coated with hydrocarbon and fluorocarbon moieties. Roughening of the chemically modified surfaces resulted in an overall increase in bacterial attachment. Preadsorption of proteins affected bacterial adherence but did not fully abolish the influence of the original surface chemistry. However, in certain instances, mostly with saliva or serum, masking of the underlying surface chemistry became evident. The new bacterial overlay method allowed a reliable quantification of surface-attached bacteria and could hence be employed for measuring bacterial adherence on material specimens in a variety of applications.  相似文献   

18.
Abstract. The phylogenetic position of Polygordius is still pending; relationships with either Opheliidae or with Saccocirrus are the most favored hypotheses. The present study of Polygordius appendiculatus was designed to look for morphological characters supporting either of these two hypotheses. The homology of the anterior appendages, and the structure of the central nervous system and nuchal organ all required clarification; we also examined whether photoreceptor‐like sense organs exist in adults. From their innervation pattern, it is likely that the anterior appendages represent palps. They lack structures typical of palps in Canalipalpata, such as musculature and coelomic cavities, which would be expected in the case of a saccocirrid relationship. Thirteen photoreceptor‐like sense organs were found in front of the brain, the only structures resembling photoreceptors in adults of P. appendiculatus. These multicellular sense organs comprise a supportive cell and several sensory cells enclosing an extracellular cavity. There are three different types of sensory cells: one rhabdomeric and two ciliary. These sensory cells are combined differently into three forms of sense organ: the most frequent uses all three types of sensory cells, the second possesses one rhabdomeric and one ciliary cell type, and the third has two types of ciliary sensory cells. Whereas similar sensory cells are frequently found in various polychaetes, their combination in one sensory organ is unique to Polygordius and is considered to represent an autapomorphy. The nuchal organs exhibit features typical of polychaetes; there are no specific features in common with Saccocirrus. Instead, the covering structures show obvious similarities to Opheliidae, as can also be found in the central nervous system. Altogether, the current observations do not contradict a relationship with opheliids but provide no evidence of a relationship with Saccocirrus as has been found in certain molecular analyses, and thus currently leave the phylogenetic position of Polygordius unresolved.  相似文献   

19.
A bioassay-guided approach was used to identify defense compounds that are present on the surface of Zostera marina and which inhibit settlement of microfoulers at natural concentrations. Moderately polar eelgrass surface extracts inhibited the settlement of seven marine bacteria and one yeast that originated from non-living substrata. In contrast, five other bacterial strains that had been directly isolated from eelgrass surfaces were all insensitive, which suggested a selective effect of surface metabolites on the microbial communities present on eelgrass. Bioassay-guided isolation of active compounds from the extracts in combination with UPLC-MS and 1H-NMR spectroscopy resulted in the identification of rosmarinic acid, luteolin-7-sulfate and diosmetin-7-sulfate or its isomer chrysoeriol-7-sulfate. All three compounds are nontoxic repellents, as they did not inhibit bacterial growth, but prevented bacterial settlement in a dose-dependent manner. Between 15.6 and 106.8 μg ml?1 of rosmarinic acid were present on the eelgrass surface, enough for half maximal settlement inhibition of bacteria.  相似文献   

20.
The relationship between invasiveness and calcium dependency was examined in various strains of Yersinia enterocolitica and Y. pseudotuberculosis by using established cell lines. Infection with calcium-dependent bacteria resulted in the formation of microvilli and the adherence of bacteria on the cell surface, and the adherent bacteria were ingested 1.5 hr after infection. Morphological changes in the cells became visible 2 to 3 hr after infection, and intracellular multiplication of the ingested bacteria was noted. When the cells were incubated with bacteria at 37 C for 1.5 hr and then at 25 C, however, the morphological changes in the infected cells were not observed. No isogenic strains that had lost calcium dependency for growth at 37 C were able to elicit the morphological changes in the cells, though they possessed the ability to adhere to and penetrate the cells. The antigen(s) supposedly related to cytotoxicity of the calcium-dependent Yersinia was sought by using antibodies prepared against calcium-dependent bacteria and then absorbed with calcium-independent bacteria and with calcium-independent bacterial cytosol. Double diffusion tests between the antisera and bacterial cytosol extracts revealed the presence of an antigen which was a cytoplasmic substance common to all calcium-dependent but not calcium-independent strains of Y. enterocolitica and Y. pseudotuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号