首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Tumor-promoting phorbol esters activate protein kinase C (PKC) isozymes by binding to the zinc-finger like cysteine-rich domains in the N-terminal regulatory region. Our recent studies have revealed that only PKCgamma has two high affinity phorbol ester-binding domains, providing a structural blueprint for the rational design of PKCgamma-selective modulators for the treatment of neuropathic pain. To extend this approach, the 116-mer peptide containing the double cysteine-rich motifs of PKCgamma (gamma-C1A-C1B) has been synthesized for the first time using an Fmoc-solid phase strategy with a stepwise chain elongation. This peptide was purified by the reversed phase HPLC to give satisfactory mass data (MALDI-TOF-MS and ESI-TOF-MS). The peptide was successfully folded by zinc treatment and the folded peptide was analyzed intact under neutral conditions by ESI-TOF-MS. The multiple charge mass envelopes shifted to those of the lower mass charge state by addition of 4 molar equiv. ZnCl2, suggesting that gamma-C1A-C1B preserves some higher order structure by the zinc folding. Moreover, the mass spectrum of the zinc-folded peptide in the presence of EDTA clearly showed that gamma-C1A-C1B coordinates exactly four atoms of zinc. This zinc stoichiometry is identical to that of native PKCgamma. Scatchard analysis of the zinc-folded peptide revealed two binding sites of distinctly different affinities (Kd=6.0 +/- 1.5 and 47.0 +/- 6.6 nM) comparable to those reported by Quest and Bell for the GST fusion protein of gamma-C1A-C1B prepared by DNA recombination. These results indicate that gamma-C1A-C1B serves as an effective surrogate for native PKCgamma for the study of the structural characteristics of the binding recognition event and the design, discovery, and development of new PKCgamma-selective modulators.  相似文献   

2.
The binding of cadmium(II) to human serum transferrin in 0.01 M N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid with 5 mM bicarbonate at 25 degrees C has been evaluated by difference ultraviolet spectroscopy. Equilibrium constants were determined by competition versus three different low molecular weight chelating agents: nitrilotriacetic acid, ethylenediamine-N,N'-diacetic acid, and triethylenetetramine. Conditional equilibrium constants for the sequential binding of two cadmium ions to transferrin under the stated experimental conditions are log K1 = 5.95 +/- 0.10 and log K2 = 4.86 +/- 0.13. A linear free energy relationship for the complexation of cadmium and zinc has been prepared by using equilibrium data on 243 complexes of these metal ions with low molecular weight ligands. The transferrin binding constants for cadmium and zinc are in good agreement with this linear free energy relationship. This indicates that the larger size of the cadmium(II) ion does not significantly hinder its binding to the protein.  相似文献   

3.
The stoichiometries and the affinity toward simple and paired metal ions of synthetic amyloid-β(1-40) peptide (Aβ1-40) were investigated by electrospray ion trap mass spectrometry (ESI-MS), circular dichroism (CD), and atomic force microscopy (AFM). The results lead to the working hypothesis that pH-dependent metal binding to Aβ1-40 may induce conformational changes, which affect the affinity toward other metals. A significant copper and zinc binding to Aβ1-40 peptide at pH 5.5 was found, whereas nickel ions commonly bind to each molecule of β-amyloid peptide. Some complexes of Aβ1-40 with more than one nickel ion were identified by ESI-MS. In addition, nickel ions proved to enhance Aβ oligomerization. On increasing pH, up to 12 ions of zinc may bind to a single Aβ molecule. Under the same pH and concentration conditions, the binding pattern of the independent copper and silver ions to Aβ1-40 was different from that of the equimolecular mixture of the two metal ions. One might assume that some conformational changes due to water loss altered the capacity of Aβ peptide to bind certain heavy metal ions. As a consequence, copper–silver interaction with the binding process to Aβ1-40 became highly complex. A competition between silver and nickel ions for Aβ1-40 binding sites at high pH was also observed. New strategies were proposed to identify the characteristic signals for some important metal ion–peptide complexes in the spectra recorded at high pH or high concentrations of metal ions. To explain the formation of such a large number of high metal ion–Aβ complexes, we took into consideration the participation of both histidine residues and free amino groups as well as carboxylate ones in the binding process. Finally, CD and AFM studies supported the mass spectrometric data.  相似文献   

4.
5.
The metallo-beta-lactamases require divalent cations such as zinc or cadmium for hydrolyzing the amide bond of beta-lactam antibiotics. The crystal structure of the Zn2+ -bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam bond of the substrate. It was previously reported that the replacement of the active site Cys181 by a serine residue severely impaired catalysis while atomic absorption measurements indicated that binding of the two zinc ions remained intact. Contradicting data emerge from recent mass spectrometry results, which show that only a single zinc ion binds to the C181S metallo-beta-lactamase. In the current study, the C181S mutant enzyme was examined at the atomic level by determining the crystal structure at 2.6 A resolution. The overall structure of the mutant enzyme is the same as that of the wild-type enzyme. At the mutation site, the side chain of Ser181 occupies the same position as that of the side chain of Cys181 in the wild-type protein. One zinc ion, Zn1, is present in the crystal structure; however, the site of the second zinc ion, Zn2 is unoccupied. A water molecule is associated with Zn1, reminiscent of the hydroxide seen in the structure of the wild-type enzyme but farther from the metal. The position of the water molecule is off the plane of the carboxylate group of Asp103; therefore, the water molecule may be less nucleophilic than a water molecule which is coplanar with the carboxylate group.  相似文献   

6.
Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn(2+)- or Cd(2+)-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.  相似文献   

7.
New Delhi metallo-β-lactamase 1 (NDM-1) is an important causative factor of antimicrobial resistance due to its efficient hydrolysis of a broad range of β-lactam compounds. The two zinc ions at the active site play essential roles in the NDM-1 catalytic activities. In a previous work, H116, one of the three ligands at the Zn1 site, was mutated in order to investigate the nature of zinc ion chelation. We report here the crystal structure of the NDM-1 H116Q mutant, that was designed to convert a B1 di-zinc enzyme into a B3 type, which either still binds two zinc ions or binds only one at the Zn2 site. The effect of mutation on the overall structure is minimal. Unexpectedly, no zinc ion was observed in the crystal structure. The Zn2-site ligating residue C221 forms a covalent bond with the nearby K121, a residue important in maintaining the active-site structure. The largest conformational changes were found at main-chain and side-chain atoms at residues 232–236 (loop 10), the proper configuration of which is known to be essential for substrate binding. The catalytic-site mutation caused little local changes, yet the effects were amplified and propagated to the substrate binding residues. There were big changes in the ψ angles of residues G232 and L234, which resulted in the side chain of N233 being displaced away from the substrate-binding site. In summary, we failed in turning a B1 enzyme into a B3 enzyme, yet we produced a zinc-less NDM-1 with residual activities.  相似文献   

8.
Binding of zinc and cadmium to human serum albumin   总被引:1,自引:0,他引:1  
1. The interaction of zinc and cadmium ion with human serum albumin (HSA) is evaluated and compared by potentiometric titration method and computer simulation of complex equilibria. 2. Zinc binds to histidine and free amino groups, cadmium in addition to basic functional groups of the protein. 3. Whereas zinc binds stronger in 1:1 complexes, chelate binding favours cadmium ions. 4. Within biological pH-conditions, high amounts Zn(II) and even more of Cd(II) will be bound to HSA.  相似文献   

9.
The solution equilibrium and the binding mode of the species in the five-component system containing two metal ions (copper(II) and zinc(II)) and three ligands (A=diethylenetriamine, B=imidazole, C=tris(2-aminoethyl)amine) were investigated by pH-potentiometric titration, UV-visible spectrophotometry and EPR (electron paramagnetic resonance) spectroscopic titration in aqueous solution in the 2-11 pH range. An imidazolate-bridged heterobinuclear complex (ACuBH(-1)ZnC) was found to evolve above pH=7 and was stable between pH 7 and 11. The existence of the ACuBH(-1)ZnC complex (by determination of its molecular weight) was proved by mass spectrometry (ESI-MS (electrospray ionization mass spectrometry) and MALDI (matrix-assisted laser desorption/ionization) techniques). The electrochemical behaviour and the superoxide dismutase activity of this complex were also tested by cyclic voltammetry and the Riboflavin/NBT (nitro blue tetrazolium) assay, respectively.  相似文献   

10.
11.
The metallo-beta-lactamases require zinc or cadmium for hydrolyzing beta-lactam antibiotics and are inhibited by mercurial compounds. To data, there are no clinically useful inhibitors of this class of enzymes. The crystal structure of the Zn(2+)-bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam ring. To study the metal coordination further, the crystal structures of a Cd(2+)-bound enzyme and of an Hg(2+)-soaked zinc-containing enzyme have been determined at 2.1 A and 2.7 A, respectively. Given the diffraction resolution, the Cd(2+)-bound enzyme exhibits the same active-site architecture as that of the Zn(2+)-bound enzyme, consistent with the fact that both forms are enzymatically active. The 10-fold reduction in activity of the Cd(2+)-bound molecule compared with the Zn(2+)-bound enzyme is attributed to fine differences in the charge distribution due to the difference in the ionic radii of the two metals. In contrast, in the Hg(2+)-bound structure, one of the zinc ions, Zn2, was ejected, and the other zinc ion, Zn1, remained in the same site as in the 2-Zn(2+)-bound structure. Instead of the ejected zinc, a mercury ion binds between Cys 104 and Cys 181, 4.8 A away from Zn1 and 3.9 A away from the site where Zn2 is located in the 2-Zn(2+)-bound molecule. The perturbed binuclear metal cluster explains the inactivation of the enzyme by mercury compounds.  相似文献   

12.
Diacylglycerol kinase (DGK) and protein kinase C (PKC) are two different enzyme families that interact with diacylglycerol. Both enzymes contain cysteine-rich C1 domains with a zinc finger-like structure. Most of the C1 domains of PKCs show strong phorbol-12,13-dibutyrate (PDBu) binding with nanomolar dissociation constants (K(d)'s). However, there has been no experimental evidence that phorbol esters bind to the C1 domains of DGKs. We focused on DGK gamma because its C1A domain has a high degree of sequence homology to those of PKCs, and because DGK gamma translocates from the cytoplasm to the plasma membrane following 12-O-tetradecanoylphorbol-13-acetate treatment similar to PKCs. Two C1 domains of DGK gamma (DGK gamma-C1A and DGK gamma-C1B) were synthesized and tested for their PDBu binding along with whole DGK gamma (Flag-DGK gamma) expressed in COS-7 cells. DGK gamma-C1A and Flag-DGK gamma showed strong PDBu binding affinity, while DGK gamma-C1B was completely inactive. Scatchard analysis of DGK gamma-C1A and Flag-DGK gamma gave K(d)'s of 3.1 and 4.4 nM, respectively, indicating that the major PDBu binding site of DGK gamma is C1A. This is the first evidence that DGK gamma is a specific receptor of tumor-promoting phorbol esters.  相似文献   

13.
The earthworm Lumbricus rubellus has been found to inhabit cadmium-rich soils and accumulate cadmium within its tissues. Two metallothionein (MT) isoforms (1 and 2) have been identified and cloned from L. rubellus. In this study, we address the metalation status, metal coordination, and structure of recombinant MT-2 from L. rubellus using electrospray ionization mass spectrometry (ESI-MS), UV absorption, and circular dichroism (CD) spectroscopy. This is the first study to show the detailed mass and CD spectral properties for the important cadmium-containing earthworm MT. We report that the 20-cysteine L. rubellus MT-2 binds seven Cd(2+) ions. UV absorption and CD spectroscopy and ESI-MS pH titrations show a distinct biphasic demetalation reaction, which we propose results from the presence of two metal-thiolate binding domains. We propose stoichiometries of Cd(3)Cys(9) and Cd(4)Cys(11) based on the presence of 20 cysteines split into two isolated regions of the sequence with 11 cysteines in the N-terminal and 9 cysteines in the C-terminal. The CD spectrum reported is distinctly different from any other metallothionein known suggesting quite different binding site structure for the peptide.  相似文献   

14.
Nano-electrospray ionization time-of-flight mass spectrometry (ESI-MS) was used to study the conformational consequences of metal ion binding to the colicin E9 endonuclease (E9 DNase) by taking advantage of the unique capability of ESI-MS to allow simultaneous assessment of conformational heterogeneity and metal ion binding. Alterations of charge state distributions on metal ion binding/release were correlated with spectral changes observed in far- and near-UV circular dichroism (CD) and intrinsic tryptophan fluorescence. In addition, hydrogen/deuterium (H/D) exchange experiments were used to probe structural integrity. The present study shows that ESI-MS is sensitive to changes of the thermodynamic stability of E9 DNase as a result of metal ion binding/release in a manner consistent with that deduced from proteolysis and calorimetric experiments. Interestingly, acid-induced release of the metal ion from the E9 DNase causes dramatic conformational instability associated with a loss of fixed tertiary structure, but secondary structure is retained. Furthermore, ESI-MS enabled the direct observation of the noncovalent protein complex of E9 DNase bound to its cognate immunity protein Im9 in the presence and absence of Zn(2+). Gas-phase dissociation experiments of the deuterium-labeled binary and ternary complexes revealed that metal ion binding, not Im9, results in a dramatic exchange protection of E9 DNase in the complex. In addition, our metal ion binding studies and gas-phase dissociation experiments of the ternary E9 DNase-Zn(2+)-Im9 complex have provided further evidence that electrostatic interactions govern the gas phase ion stability.  相似文献   

15.
A CUA center engineered into Pseudomonas aeruginosa azurin was studied by metal substitution. Metal-binding properties were determined by electronic absorption (UV-vis) and electrospray ionization mass spectrometry (ESI-MS). The metal-binding site readily binds thiophilic metal ions, such as Hg(II), Ag(I), Cu(I), Cd(II), and Au(I). Harder metal ions, like Co(II), bind to apo-CuA-azurin only under basic conditions (pH 9.1-9.2). The results obtained from these studies indicate that two factors influence metal binding in CuA azurin: (1) the site favors metal combinations which produce an overall +3 charge, and (2) the site binds soft, thiophilic metal ions. The results demonstrate the remarkable ability of the CuA center to maintain valence delocalization of its native metal ions and to ensure redox accessibility of only one of the two redox couples (i.e., [Cu(1.5)...Cu(1.5)]<==> [Cu(I)...Cu(I)]) under physiological conditions. These findings may lead to the preparation of new metal ion derivatives and can serve as a basis for understanding this efficient electron transfer center.  相似文献   

16.
17.
In eukaryotic cells, ubiquitylation of proteins plays a critical role in regulating diverse cell processes by the ubiquitin activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin protein ligase (E3). E3 is the key component that confers specificity to ubiquitylation and directs the conjugation of ubiquitin to a specific target protein. RING domains are small structured protein domains that require the coordination of zinc ions for a stable tertiary fold and some of them are involved in the E3 family. In this study, we reported the detailed relationships between the two zinc ions and the structural stability of the c-Cbl RING domain by molecular dynamics simulations. Our results show that these two zinc ions play an important role in maintaining both the secondary and tertiary structural stabilities of the c-Cbl RING domain. Our results also reveal that the secondary structural stability of the c-Cbl RING domain is mainly determined by the hydrogen-bonding networks in or near the two zinc ion binding sites. Our results further demonstrate that zinc ion binding site 2 is more structurally stable than site 1.  相似文献   

18.
Laser flash photolysis technique was used to study zinc and cadmium ion effects on bimolecular and nanosecond geminate molecular oxygen (O(2)) rebinding to horse heart myoglobin. Time courses for geminate recombination are analyzed in terms of a three-step, side path model. In the presence of metal ions, the greatest changes are observed in the rate constant of the O(2) rebinding from within the primary docking site and the rate constant of the O(2) migration from the primary site to the secondary xenon docking sites. The study revealed that modulation of the myoglobin affinity for O(2) by zinc and cadmium occurs at the level of the innermost barrier controlling O(2) rebinding from within the primary docking site. Sets of the calculated rate constants provide a basis for an interpretation of metal ion effects on the myoglobin structure. Overall, the results demonstrate that the metal ions binding to myoglobin gives rise to an increase in the population of the "open" distal pocket protein conformation.  相似文献   

19.
At micromolar concentrations, zinc (Zn) and cadmium, but not other metals, greatly augmented binding of [3H]phorbol dibutyrate ([3H]PDBu) to protein kinase C (PKC) in cell homogenates and intact cells (in the presence of ionophore). Increased binding persisted for several hours. The heavy-metal chelating agent 1,10-phenanthroline completely reversed the increased [3H]PDBu binding in cells pretreated with 65Zn and ionophore and this was associated with a decline of about 20% in cell-associated 65Zn, suggesting that a relatively small pool of intracellular Zn acts on PKC. This may be a membrane-associated pool, since 65Zn readily bound to isolated erythrocyte inside-out membranes. Phenanthroline also partially inhibited binding of [3H]PDBu to PKC in untreated cells and extracts in a Zn-reversible manner. Therefore, cellular Zn appears to regulate the interaction of ligand with PKC. PKC bound to a Zn affinity column and was eluted by metal-chelator, confirming that Zn interacts directly with PKC.  相似文献   

20.
Phospholipase A(2) coordinates Ca(2+) ion through three carbonyl oxygen atoms of residues 28, 30, and 32, two carboxyl oxygen atoms of residue Asp49, and two (or one) water molecules, forming seven (or six) coordinate geometry of Ca(2+) ligands. Two crystal structures of cadmium-binding acidic phospholipase A(2) from the venom of Agkistrodon halys Pallas (i.e., Agkistrodon blomhoffii brevicaudus) at different pH values (5.9 and 7.4) were determined to 1.9A resolution by the isomorphous difference Fourier method. The well-refined structures revealed that a Cd(2+) ion occupied the position expected for a Ca(2+) ion, and that the substitution of Cd(2+) for Ca(2+) resulted in detectable changes in the metal-binding region: one of the carboxyl oxygen atoms from residue Asp49 was farther from the metal ion while the other one was closer and there were no water molecules coordinating to the metal ion. Thus the Cd(2+)-binding region appears to have four coordinating oxygen ligands. The cadmium binding to the enzyme induced no other significant conformational change in the enzyme molecule elsewhere. The mechanism for divalent cadmium cation to support substrate binding but not catalysis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号