共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasoactive intestinal peptide (VIP) stimulated adenylyl cyclase activity in membranes from rat seminal vesicle. GTP potentiated the stimulatory effect of VIP so that it was routinely included at 10 microM. The stimulation of adenylyl cyclase by VIP was time and temperature dependent. The response was linear with time up to 15 min at 30 degrees C. Half-maximal adenylyl cyclase activation (in the presence of 10 microM GTP) was achieved at 3.0 nM VIP. The enzyme activity increased about 150% with respect to basal values at the maximal VIP concentration tested (1 microM). The relative potency of peptides upon stimulation of adenylyl cyclase activity was: VIP greater than helodermin greater than peptide histidine isoleucinamide greater than rat growth hormone-releasing factor. Other agents like GTP (0.1 mM), GppNHp (0.1 mM), forskolin (0.1 mM) and sodium fluoride (10 mM) increased the adenylyl cyclase activity 1.8-, 4.4-, 6.7- and 2.4-fold, respectively. Taken together, the presence of VIP in nerve terminals innervating the seminal vesicle of rats and the existence of VIP receptors coupled to adenylyl cyclase strongly suggest a physiological role for this neuropeptide in the modulation of seminal vesicle cell function. 相似文献
2.
3.
W L Ryan N A Short G L Curtis 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1975,150(3):699-702
Adenylate cyclase activity of a rat embryo fibroblast cell line (F111) is markedly increased by brief treatment with 1:300 trypsin. The degree of stimulation depends upon the length of time the cells are treated and the concentration of trypsin. Crystalline trypsin produced a stimulation similar to that obtained with 1:300 trypsin. Further, the addition of soybean trypsin inhibitor blocked the stimulation of adenylate cyclase by 1:300 trypsin. Trypsin-treated adenylate cyclase responds to PGE1, but there is no increase over that of untreated enzyme. This result and the increase in fluoride-stimulated levels of activity suggest that the trypsin is acting upon the catalytic unit of the enzyme. 相似文献
4.
Previous studies have described a decrease in the activity of adenylate cyclase in the parotid gland of isoproterenol-treated rats. In the present studies, a similar decrease was observed in mice treated with isoproterenol. Studies on the subcellular distribution of adenylate cyclase after isoproterenol stimulation of the parotid gland showed that enzyme activity was increased in the lysosomal fraction and decreased in the cellular membrane fractions. Cytochemical studies on the localization of adenylate cyclase in stimulated gland showed an increase in vesicles which contained enzyme activity and a decrease in activity at the luminal and plasma membranes. It is suggested, based on the present findings and results reported by other investigators, that after isoproterenol stimulation of the parotid gland, adenylate cyclase (along with excess membrane) is degraded by lysosomes. If this suggestion is true, then the observed decrease in adenylate cyclase would have a molecular explanation. 相似文献
5.
6.
7.
Adenylate cyclase of heart sarcotubular membranes 总被引:3,自引:0,他引:3
8.
M Laburthe B Amiranoff N Boige C Rouyer-Fessard K Tatemoto L Moroder 《FEBS letters》1983,159(1-2):89-92
GRF (10(-8) - 10(-5) M) is shown to inhibit competitively the binding of [125I]VIP to human and rat intestinal epithelial membranes. The affinity of GRF for VIP receptor is 700-800-times lower than that of VIP in both species. The order of affinity of different peptides is VIP greater than PHI greater than secretin greater than GRF in rat, and VIP greater than GRF greater than PHI greater than secretin in man. The important species specificity of VIP receptors in recognizing PHI and secretin does not occur in the case of GRF. GRF stimulates adenylate cyclase through its interaction with VIP receptors in rat and human membranes. However, while GRF behaves as a VIP agonist in human tissue, it is a partial agonist/antagonist of VIP in the rat. 相似文献
9.
A. M. Bajo L. G. Guijarro M. G. Juarranz P. Valenzuela P. Martinez J. C. Prieto 《Bioscience reports》1993,13(2):69-77
Vasoactive intestinal peptide (VIP) has been shown to stimulate adenylyl cyclase activity in human endometrial membranes. The effect was dependent on the time and temperature of incubation as well as on the concentration of endometrial membrane proteins in the medium. In the presence of 1 M GTP, half-maximal stimulation of adenylyl cyclase activity was observed at 25.0±7.0 nM VIP, whereas the maximal activity (at 1 M VIP)corresponded to an increase of about 140% with respect to basal values (7.5±0.6 pmol cyclic AMP/min/mg of protein). However, the maximal stimulation of adenylyl cyclase activity was obtained with helodermin (1 M) that increased the activity by 170% over the basal. The relative potency of VIP-related peptides upon the adenylyl cyclase activity was: helodermin (ED50=1.8±1.4 nM)>VIP(ED50=25.0±7.0 nM)>PHI (ED50=725.0±127.2 nM). Secretin had a faint effect upon the adenylyl cyclase activity and glucagon was completely inefficient at this level. The presence of s and i subunits of G proteins in human endometrium was detected by immunoblot. Preliminary results showed the presence of two classes of125I-VIP receptors in human endometrial membranes with the following stoichoimetric parameters: high affinity receptor (Kd=2.0 nM, binding capacity 0.1 pmol VIP/mg protein) and low affinity receptor (Kd=0.43 M, binding capacity 13.1 pmol VIP/mg protein). The present results together with the known presence of VIP in human uterus and the actions of this neuropeptide in the adjacent myometrial tissue support the idea that VIP and related peptides may have a role in human endometrium. 相似文献
10.
Adenylate cyclase responses to sucrose stimulation in membranes of pig circumvallate taste papillae. 总被引:1,自引:0,他引:1
M Naim T Ronen B J Striem M Levinson U Zehavi 《Comparative biochemistry and physiology. B, Comparative biochemistry》1991,100(3):455-458
1. Typical adenylate cyclase (AC) responses to guanine nucleotides were found in membranes of pig circumvallate (CV) taste papillae. 2. Sucrose stimulated AC activity in the CV membranes and this stimulation was GTP dependent and tissue specific. 3. The stimulatory effect of sucrose in the CV membranes was dependent on the concentration of membranes used in the AC assay. 4. This study provides the first biochemical data on cellular transduction of taste in the pig, compares positively to preliminary results in cattle and supports recent suggestions for a role of cAMP in sweet taste transduction. 相似文献
11.
Yukiharu Hiramatsu Indu S. Ambudkar Bruce J. Baum 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1991,1092(3):391-396
β-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The β-adrenergic agonist isoproterenol (10 μM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (≈ 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5′-(3-O-thio)triphosphate (GTPγS), isoproterenol increased cAMP formation to the same extent as that observed with AlF4?. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (≈ 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the ‘turn-off’ step for the adenylyl cyclase activation seen following β-adrenergic stimulation of rat parotid glands. 相似文献
12.
beta-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The beta-adrenergic agonist isoproterenol (10 microM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (approximately 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), isoproterenol increased cAMP formation to the same extent as that observed with AlF-4. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (approximately 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the 'turn-off' step for the adenylyl cyclase activation seen following beta-adrenergic stimulation of rat parotid glands. 相似文献
13.
K Kasai M Hiraiwa Y Suzuki N Banba T Emoto T Nakamura S I Shimoda 《Hormones et métabolisme》1986,18(9):625-629
Effect of prostacyclin (PGI2) on adenylate cyclase activity in human thyroid membranes was examined. PGI2 caused a dose- and time-dependent production of cyclic AMP (cAMP) with high potency. When GTP was added in concentrations up to 100 uM, the activation of adenylate cyclase by PGI2 was increased. In the assay medium containing 3 mM ATP, 10 uM GTP and nucleotide regenerating system, the replacement of Mg2+ by increasing concentrations of Mn2+ caused a progressive loss of PGI2 as well as TSH-stimulated adenylate cyclase activities, while high concentrations of Mg2+ (12 or 18 mM) slightly suppressed the activity stimulated by either PGI2 or TSH. Both agents had an additive effect on the stimulation of adenylate cyclase activity in the presence of either 6 mM Mg2+ or 6 mM Mn2+. Gamma-globulin fraction containing non-stimulatory TSH receptor antibody which was prepared from a patient with chronic thyroiditis, suppressed only TSH- but not PGI2-stimulation of the adenylate cyclase activity. These results suggest that PGI2 can stimulate the adenylate cyclase activity in human thyroid tissue, and that PGI2-stimulation may be mediated by the different system from TSH-dependent one. 相似文献
14.
M C Veroni V P Michelangeli T P Heaney K W Ng N C Partridge R G Larkins 《Hormones et métabolisme》1981,13(5):254-259
Adenylate cyclase activity was assayed in a crude particulate fraction of one benign and one malignant human insulinoma. Adenylate cyclase of both tumours responded to 5'-guanylyl-imidodiphosphate, sodium fluoride, glucagon and prostaglandin E2, and in addition the adenylate cyclase of the benign tumour responded to isoprenaline. Glucose and prostaglandin I2 (prostacyclin) did not stimulate the adenylate cyclase in either tumour, although prostaglandin I2 stimulated insulin secretion in cultures of the benign tumour. The in vitro responsiveness of the adenylate cyclase to glucagon did not correlate closely with the effect of glucagon on insulin secretion in vivo. 相似文献
15.
F M Finn J A Montibeller Y Ushijima K Hofmann 《The Journal of biological chemistry》1975,250(4):1186-1192
The adenylate cyclase system present in a preparation enriched in plasma membranes derived from bovine adrenal cortex was investigated in considerable detail. This system is stimulated by adrenocorticotropic hormone (ACTH), by biologically active analogs of this hormone, and by fluoride ion. The preparation contains sodium-potassium- and magnesium-dependent ATPases that are markedly inhibited by 50 mM sodium fluoride. Incorporation of a pyruvate phosphokinase ATP generating system into the adenylate cyclase assay medium provided constant substrate levels. In the presence of the ATP generating system, the rate of cyclic AMP formation (basal, fluoride, and ACTH-activated) was proportional to enzyme concentration and was linear with time. Proportionality with respect to enzyme concentration as concerned the hormone-activated adenylate cyclase was achieved only when the ratio of hormone to enzyme protein was kept constant. The temperature optimum of the adenylate cyclase, basal or activated, was approximately 30 degrees. Michaelis-Menten kinetics were observed when the ratio of Mg2+ to ATP was approximately 6:1. Both calcium and ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid completely inhibited the adenylate cyclase system at concentrations of 5 and 0.5 mM, respectively. GTP was inhibitory at concentrations of 10-2 M but had little effect at lower concentrations. Freezing in liquid nitrogen and storage at -60 degrees exerted little effect on the fluoride-stimulated enzyme but lowered hormone stimulated activity. Preincubation in the presence of ACTH afforded a high degree of stabilization of the enzyme system while preincubation with a biologically inactive analog afforded no protection. 相似文献
16.
17.
18.
N.Bojji Reddy Katharine L. Oliver Barry W. Festoff W.King Engel 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,540(3):389-401
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle. 相似文献
19.
In mouse parotid membranes forskolin activated adenylate cyclase four-fold; maximal activation of the enzyme occurred with 10 microM forskolin. Activation was not dependent on the guanyl nucleotide GTP nor on the inhibitory guanine nucleotide 5'-0-(2-Thiodiphosphate), GDP beta S. In contrast, stimulation of adenylate cyclase by isoproterenol required GTP and was antagonized by GDP beta S in a dose-dependent manner. These results indicate that the guanyl-binding protein of mouse parotid adenylate cyclase is not a requisite for forskolin activation and lends support for direct interaction of forskolin at the catalytic subunit. 相似文献