首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human hepatocellular carcinoma-derived cell line, PLC/PRF/5, was examined for its ability to respond to epidermal growth factor (EGF) exposure with increased phosphatidylinositol 4,5-bisphosphate hydrolysis. Upon addition of EGF (25 ng/ml), a rapid (10-15 s) but transient increase in Ins(1,4,5)P3 levels and large, prolonged (2 min) increases in Ins(1,3,4,5)P4 and Ins(1,3,4)P3 levels were detected. Increases in cytosolic Ca2+ were observed after a 10 to 20 s lag, reaching peak value at 1 min, and remaining elevated for 10 min. The initial burst of cytosolic Ca2+ occurred in the absence of extracellular Ca2+ and probably reflects mobilization of intracellular Ca2+ stores. In cells pretreated with EGTA, the sustained component of the Ca2+ response was not observed. Comparison of the inositol phosphate and Ca2+ responses of PLC/PRF/5 cells to responses reported in other cell types indicates that this cell line is a good model for EGF action in liver.  相似文献   

2.
In internally perfused single lacrimal acinar cells the competitive inositol 1,4,5-trisphosphate (Ins 1,4,5-P3)-antagonist heparin inhibits the ACh-evoked K+ current response mediated by internal Ca2+ and also blocks both the Ins 1,4,5-P3-evoked transient as well as the sustained K+ current increase evoked by combined stimulation with internal Ins 1,4,5-P3 and inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5-P4). When, during sustained stimulation with both Ins 1,4,5-P3 and Ins 1,3,4,5-P4, one of the inositol polyphosphates is removed, the K+ current declines; whereas removal of Ins 1,4,5-P3 results in an immediate termination of the response, removal of Ins 1,3,4,5-P4 only causes a very gradual and slow reduction in the current. Ins 1,3,4,5-P4 is therefore not an acute controller of Ca2+ release from stores into the cytosol, but modulates the release of Ca2+ induced by Ins 1,4,5,P3 by an unknown mechanism, perhaps by linking Ins 1,4,5 P3-sensitive and insensitive Ca2+ stores.  相似文献   

3.
The effect of Ins 1,3,4,5-P4 on the intracellular Ca2+ mobilization produced by Ins 1,4,5-P3 has been examined in permeabilized hepatocytes. Ins 1,3,4,5-P4 did not affect the magnitude of the Ins 1,4,5-P3-mediated Ca2+ release but did inhibit re-accumulation of the released Ca2+ back into intracellular stores. This effect was not mimicked by Ins 1,3,4-P3. In hepatocytes, the re-uptake phase of the response results from Ins 1,4,5-P3 hydrolysis. Measurements using labeled substrates indicate that Ins 1,3,4,5-P4 inhibits the hydrolysis of Ins 1,4,5-P3 and vice versa. Since the removal of the 5-phosphate on Ins 1,4,5-P3 and Ins 1,3,4,5-P4 is a common step in the disposal of both compounds, it is suggested that one of the biological effects of Ins 1,3,4,5-P4 may be to slow hydrolysis of Ins 1,4,5-P3 and thereby prolong the duration of a Ca2+ transient.  相似文献   

4.
Exposure of A431 human epidermoid carcinoma cells to epidermal growth factor (EGF), bradykinin, and histamine resulted in a time- and concentration-dependent accumulation of the inositol phosphates (InsP) inositol monophosphate, inositol bisphosphate, and inositol trisphosphate (InsP3). Maximal concentrations of EGF (316 ng/ml; approximately 50 nM), bradykinin (1 microM), and histamine (1 mM) resulted in 3-, 6-, and 3-fold increases, respectively, in the amounts of inositol phosphates formed over a 10-min period. The K0.5 values for stimulation were approximately 10 nM, 3 nM, and 10 microM for EGF, bradykinin, and histamine, respectively. EGF and bradykinin stimulated the rapid accumulation of the two isomers of InsP3, Ins(1,3,4)P3, and Ins(1,4,5)P3 as determined by high performance liquid chromatography analysis; maximal accumulation of Ins(1,4,5)P3 occurred within 15 s. EGF and bradykinin also stimulated a rapid (maximal levels attained within 30 s after addition of hormone) and a sustained 4- and 6-fold rise, respectively, in cytosolic free Ca2+ levels as measured by Fura-2 fluorescence. EGF and bradykinin also produced a rapid, although transient, 3- and 5-fold increase, respectively, in cytosolic free Ca2+ after chelation of extracellular Ca2+ with 3 mM EGTA. These data are consistent with the idea that EGF elevates intracellular Ca2+ levels in A431 cells, at least in part, as a result of the rapid formation of Ins(1,4,5)P3 and the consequential release of Ca2+ from intracellular stores.  相似文献   

5.
The ability of epidermal growth factor (EGF) and angiotensin II to stimulate production of inositol trisphosphate and mobilize intracellular Ca2+ in hepatocytes was compared using quin2 fluorescence to monitor changes in Ca2+ levels and high performance liquid chromatography to resolve the inositol trisphosphate (InsP3) isomers. Both EGF and angiotensin II stimulated an increase in free intracellular Ca2+ concentration ([Ca2+]i) as well as a rapid increase in the production of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Concentrations of angiotensin II which gave a rise in [Ca2+]i equivalent to that seen with maximal doses of EGF produced an equivalent increase in Ins(1,4,5)P3 formation. Both EGF and angiotensin II stimulated the formation of the Ins(1,3,4)P3 and inositol 1,3,4,5-tetrakisphosphate isomers. The formation of the Ins(1,3,4)P3 isomer lagged behind production of Ins(1,4,5)P3 but eventually reached higher levels in the cell. The initial rise in [Ca2+]i and InsP3 levels stimulated by EGF and angiotensin II was not affected by reducing the external Ca2+ concentration below 30 nM with an excess of [ethylenebis(oxyethylenenitrilo)] tetraacetic acid. Treatment of hepatocytes for 30-180 s with 1 micrograms/ml phorbol 12-myristate 13-acetate prior to the addition of EGF blocked the EGF-stimulated production of Ins(1,4,5)P3 and the increase in [Ca2+]i. Phorbol 12-myristate 13-acetate attenuated the production of Ins(1,4,5)P3 generated by angiotensin II over the concentration range of 10(-10) to 10(-8) M; however, the Ca2+ signal was only inhibited at the 10(-10) M dose of angiotensin II. Treatment of rats with pertussis toxin for 72 h prior to isolating hepatocytes blocked the ability of EGF to increase Ins(1,4,5)P3 and Ins(1,3,4)P3 but did not inhibit the ability of any concentration of angiotensin II to stimulate formation of InsP3 or inositol tetrakisphosphate. The observation that pertussis toxin selectively abolishes EGF-stimulated inositol lipid breakdown suggests that EGF and angiotensin II use different mechanisms to activate phospholipase C in hepatocytes.  相似文献   

6.
Inositol polyphosphates and intracellular calcium release   总被引:2,自引:0,他引:2  
The hydrolysis of inositol lipids triggered by the occupation of cell surface receptors generates several intracellular messengers. Many different inositol phosphate isomers accumulate in stimulated cells. Of these D-myo-inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is responsible for discharging Ca2+ from intracellular stores. Specific membrane binding sites for Ins 1,4,5-P3 have been detected. The properties of these sites and their possible relationship to the calcium release process is reviewed. Ins 1,4,5-P3 binding sites may be present in discrete subcellular structures ("calciosomes"). Kinetic and some electrophysiological evidence indicates that Ins 1,4,5-P3 acts to open a Ca2+ channel. Recent progress on the purification of the receptor from neuronal tissues is summarized. Phosphorylation of Ins 1,4,5-P3 by a specific kinase results in the production of D-myo-inositol 1,3,4,5-tetraphosphate (Ins 1,3,4,5-P4). This inositol phosphate has been reported to increase the entry of Ca2+ across the plasma membrane, activate nonspecific ion channels in the plasma membrane, alter the Ca2+ content of the Ins 1,4,5-P3-releasable store, and bind to and alter the activity of certain enzymes. These data and the possible biological significance of Ins 1,3,4,5-P4 are discussed.  相似文献   

7.
The role of Ins(1,4,5)P3 in receptor-induced Ca2+ mobilization in pituitary cells was studied at the single-cell level. Experimental strategies were developed which allowed a comparative analysis of the effects of Ins(1,4,5)P3 with those of receptor activation under identical conditions. These include microfluorimetry as well as a novel technique which permits the controlled and rapid application of intracellular messenger molecules to individual cells. This latter approach is based on the tight-seal whole-cell recording (WCR) technique, and utilizes two patch-clamp micropipettes, one for electrical recording and the second for the controlled pressure injection. Ins(1,4,5)P3, when applied with this dual-WCR (DWCR) technique, leads rapidly to a marked rise in cytosolic free Ca2+ [( Ca2+]i) and a concomitant stimulation of Ca2(+)-activated K+ current; Ins(1,4,5)P3 can thus mimic the effects of thyrotropin-releasing hormone (TRH) in the same cells under identical conditions. In cells dialysed intracellularly with heparin, a potent antagonist of Ins(1,4,5)P3 action, the rapid response to extracellular stimulation with TRH was abolished, as were the effects of intracellular application of Ins(1,4,5)P3. Heparin, which abolished Ins(1,4,5)P3 action completely, blocked responses to TRH in some cells only partially, revealing that Ca2+ mobilization response to TRH is in part slower in onset than the response to Ins(1,4,5)P3. It is concluded (1) that Ins(1,4,5)P3 is an essential element for the action of TRH, providing a rapid mechanism for Ca2+ mobilization induced by the releasing hormone and (2) that TRH action in mobilizing intracellular Ca2+ is sustained by a slower mechanism which is independent of Ins(1,4,5)P3.  相似文献   

8.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), an intracellular second messenger produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate, interacts with cytoplasmic membrane structures to elicit the release of stored Ca2+. Ins(1,4,5)P3-induced Ca2+ mobilization is mediated through high affinity receptor binding sites; however, the biochemical mechanism coupling receptor occupation with Ca2+ channel opening has not been identified. In studies presented here, we examined the effects of naphthalenesulfonamide calmodulin antagonists, W7 and W13, and a new selective antagonist, CGS 9343B, on Ca2+ mobilization stimulated by Ins(1,4,5)P3 in neoplastic rat liver epithelial (261B) cells. Intact fura-2 loaded cells stimulated by thrombin, a physiological agent that causes phosphatidylinositol 4,5-bisphosphate hydrolysis and Ins (1,4,5)P3 release, responded with a rise in cytoplasmic free Ca2+ levels that was dose dependently inhibited by W7(Ki = 25 microM), W13 (Ki = 45 microM), and CGS 9343B (Ki = 110 microM). Intracellular Ca2+ release stimulated by the addition of Ins(1,4,5)P3 directly to electropermeabilized 261B cells was similarly inhibited by pretreatment with anti-calmodulin agents. W7 and CGS 9343B, which potently blocked Ca2+/calmodulin-dependent protein kinase, had no significant effect on protein kinase A or C in dose range required for complete inhibition of Ca2+ mobilization. Ca2+ release channels and Ca2+-ATPase pump activity were also unaffected by calmodulin antagonist treatment. These results indicate that calmodulin is tightly associated with the intracellular membrane mechanism coupling Ins(1,4,5)P3 receptors to Ca2+ release channels  相似文献   

9.
The proposed Ca(2+)-signaling actions of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), formed by phosphorylation of the primary Ca(2+)-mobilizing messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), were analyzed in NIH 3T3 and CCL39 fibroblasts transfected with rat brain Ins(1,4,5)P3 3-kinase. In such kinase-transfected cells, the conversion of Ins(1,4,5)P3 to Ins(1,3,4,5)P4 during agonist stimulation was greatly increased, with a concomitant reduction in Ins(1,4,5)P3 levels and attenuation of both the cytoplasmic Ca2+ increase and the Ca2+ influx response. This reduction in Ca2+ signaling was observed during activation of receptors coupled to guanine nucleotide-binding proteins (thrombin and bradykinin), as well as with those possessing tyrosine kinase activity. Single-cell Ca2+ measurements in CCL39 cells revealed that the smaller averaged Ca2+ response of enzyme-transfected cells was due to a marked increase in the number of cells expressing small and slow Ca2+ increases, in contrast to the predominantly large and rapid Ca2+ responses of vector-transfected controls. There was no evidence that high Ins(1,3,4,5)P4 levels promote Ca2+ mobilization, Ca2+ entry, or Ca2+ sequestration. These data indicate that Ins(1,4,5)P3 is the major determinant of the agonist-induced Ca2+ signal in fibroblasts and that Ins(1,3,4,5)P4 does not appear to contribute significantly to this process. Instead, Ins(1,4,5)P3 3-kinase may serve as a negative regulator of the Ca(2+)-phosphoinositide signal transduction mechanism.  相似文献   

10.
O H Petersen 《Cell calcium》1989,10(5):375-383
The evidence for and against an important role for inositol 1,3,4,5 tetrakisphosphate (Ins 1,3,4,5 P4) in receptor-mediated Ca2+ mobilization is reviewed. Data obtained from patch-clamp whole-cell current recording studies on internally perfused exocrine acinar cells show that the acetylcholine (ACh)-evoked sustained increase in Ca2+-dependent K+ current caused by an increase in [Ca2+]i cannot be mimicked by internal application of inositol 1,4,5-trisphosphate (Ins 1,4,5 P3), but only by a combination of Ins 1,4,5 P3 and Ins 1,3,4,5 P4. The sustained response evoked by Ins 1,4,5 P3 + Ins 1,3,4,5 P4 is dependent on the presence of external Ca2+ as is the effect of ACh. Only those inositol trisphosphates able to evoke Ca2+ release from internal stores can support the action of Ins 1,3,4,5 P4 in evoking responses that are acutely dependent on extracellular Ca2+ (Ca2+ influx). The various arguments presented against an involvement of Ins 1,3,4,5 P4 are discussed. The main point emerging is that most studies are inadequately controlled and it is concluded that there is a strong need for whole-cell current recording studies combined with pipette fluid exchange to be carried out in many more systems. The major problem in this field is that the precise site and mechanism of action of Ins 1,3,4,5 P4 are unknown and that the pathway for Ca2+ uptake during receptor activation is inadequately defined.  相似文献   

11.
Stimulation of aldosterone production by angiotensin II in the adrenal glomerulosa cell is mediated by increased phosphoinositide turnover and elevation of intracellular Ca2+ concentration. In cultured bovine glomerulosa cells, angiotensin II caused rapid increases in inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) levels and cytosolic Ca2+ during the first minute of stimulation, when both responses peaked between 5 and 10 s and subsequently declined to above-baseline levels. In addition to this temporal correlation, the dose-response relationships of the angiotensin-induced peak increases in cytosolic Ca2+ concentrations and Ins-1,4,5-P3 levels measured at 10 s were closely similar. However, at later times (greater than 1 min) there was a secondary elevation of Ins-1,4,5-P3, paralleled by increased formation of inositol 1,3,4,5-tetrakisphosphate that was associated with cytosolic Ca2+ concentrations only slightly above the resting value. These results are consistent with the primary role of Ins-1,4,5-P3 in calcium mobilization during activation of the glomerulosa cell by angiotensin II. They also suggest that Ins-1,4,5-P3 participates in the later phase of the target-cell response, possibly by acting alone or in conjunction with its phosphorylated metabolites to promote calcium entry and elevation of cytosolic Ca2+ during the sustained phase of aldosterone secretion.  相似文献   

12.
Epidermal growth factor (EGF) treatment of A-431 cells induces a biphasic increase in the levels of inositol phosphates. The growth factor produces an initial, rapid increase in the level of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) due to hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (Wahl, M., Sweatt, J. D., and Carpenter, G. (1987) Biochem. Biophys. Res. Commun. 142, 688-695). The level of inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) also rises rapidly in response to treatment with EGF. The initial formation (less than 1 min) of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 does not require Ca2+ present in the culture medium. However, the addition of Ca2+ to the medium at levels of 100 microM or greater potentiates the growth factor-stimulated increases in the levels of all inositol phosphates at later times after EGF addition (1-60 min). The data suggest that EGF-receptor complexes initially stimulate the enzyme phospholipase C in a manner that is independent of an influx of extracellular Ca2+. The presence of Ca2+ in the medium allows prolonged growth factor activation of phospholipase C. Treatment of A-431 cells with Ca2+ ionophores (A23187 and ionomycin) did not mimic the activity of EGF in producing a rapid increase in the formation of the Dowex column fraction containing Ins-1,4,5-P3, Ins-1,3,4,5-P4, and inositol 1,3,4-trisphosphate (InsP3). However, the initial EGF-stimulated formation of inositol phosphates was substantially diminished in cells loaded with the Ca2+ chelator Quin 2/AM. EGF receptor occupancy studies indicated that maximal stimulation of InsP3 accumulation by EGF requires nearly full (75%) occupancy of available EGF binding sites, while half-maximal stimulation requires 25% occupancy. 12-O-Tetradecanoylphorbol-13-acetate (TPA), an exogenous activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), causes a dramatic, but transient, inhibition of the EGF-stimulated formation of inositol phosphates. Tamoxifen and sphingosine, reported pharmacologic inhibitors of protein kinase C activity, potentiate the capacity of EGF to induce formation of inositol phosphates. Neither TPA nor tamoxifen significantly affects the 125I-EGF binding capacity of A-431 cells; however, TPA appeared to enhance internalization of the ligand. Ligand occupation of the EGF receptor on the A-431 cell appears to initiate a complex signaling mechanism involving production of intracellular messengers for Ca2+ mobilization and activation of protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular oocytes, AII stimulated two- to fourfold increases in phosphoinositide hydrolysis and production of inositol phosphates. Injection of the glycosaminoglycan, heparin, which selectively blocks Ins(1,4,5)P3 receptors, prevented both AII-stimulated and Ins(1,4,5)P3-induced Ca2+ mobilization in Xenopus follicular oocytes but did not affect mobilization of Ca2+ by ionomycin or GTP. These results indicate that the AII-regulated process of gap junction communication between follicular cells and the oocyte operates through an Ins(1,4,5)P3-dependent mechanism rather than through transfer of Ca2+ into the ooplasm and subsequent Ca(2+)-induced Ca2+ release.  相似文献   

14.
Neoplastic rat liver epithelial (261B) cells made permeable by electroporation released 0.2-0.3 microM Ca2+ from intracellular stores in response to 0.5 microM Ins(1,4,5)P3 stimulation. This Ca2+ release response was found to be inhibited by heparin in a dose-dependent manner (Ki of 15 micrograms/ml). Two other glycosaminoglycans, chondroitin sulfate and hyaluronic acid, showed no inhibitory effect at doses as high as 0.2 mg/ml. Passive Ca2+ release, and sequestration of Ca2+ into intracellular storage sites by the action of Ca2+-ATPase were unaffected by heparin treatment. We conclude that the inhibitory action of heparin treatment on Ca2+ mobilization in permeabilized 261B cells is mediated through its interaction at the Ins(1,4,5)P3 receptor binding site.  相似文献   

15.
Saponin-treated liver cells and a microsomal fraction were used to characterize the mechanism of the Ca2+ release induced by different bile acids. The saponin-treated cells accumulated 0.8-1 nmol/mg of protein of the medium Ca2+ in a nonmitochondrial, high affinity, and inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ pool. Three of five bile acids tested, lithocholate and the conjugates taurolithocholate and taurolithocholate sulfate, released 85% of the Ca2+ pool within 45-60 s and with ED50 from 16 to 28 microM. Ins(1,4,5)P3 released 80% from the same Ca2+ pool with an ED50 of 0.3 microM. The Ca2+-Mg2+-ATPase inhibitor vanadate (1 mM) had no effect on the Ca2+ released by the bile acids and Ins(1,4,5)P3. The Ins(1,4,5)P3-binding antibiotic neomycin (1 mM) and the receptor competitor heparin (16 micrograms/ml) abolished the releasing effect of Ins(1,4,5)P3 but had no effect on the bile acid-mediated Ca2+ release. The 45Ca2+ accumulated by the microsomal fraction (8 nmol of 45Ca2+/mg of protein) was released by the bile acids within 45-90 s and with an ED50 of 17 microM. In contrast, the bile acids had no effect on the Ca2+ permeability of other natural and artificial membranes. The resting 45Ca2+ influx of intact cells (0.45 nmol/mg of protein/min), the 45Ca2+ accumulated by mitochondria (2-13 nmol of 45Ca2+/mg of protein), and the 45Ca2+ trapped in sonicated phosphatidylcholine vesicles (5 mM 45Ca2+) were not altered by the different bile acids. These results suggest that the Ca2+ release initiated by lithocholate and its conjugates results from a direct action on the Ca2+ permeability of the Ins(1,4,5)P3-sensitive pool. It is not mediated by Ins(1,4,5)P3 or via activation of the Ins(1,4,5)P3 receptor, and it is specific for the membrane of the internal pool.  相似文献   

16.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

17.
Cytosolic Ca2+ transients induced by hepatocyte growth factor (HGF) were imaged in primary cultured rat hepatocytes using newly developed rapid scanning confocal microscopes and Indo-1. HGF (40 ng/ml) increased cytosolic free Ca2+ concentration ([Ca2+]i) in about 60% of hepatocytes, in 45% of which the increases were oscillatory. In each of the oscillatory hepatocytes, the repetitive increases in [Ca2+]i originated from a specific same region adjacent to the cell membrane and propagated across the cell like waves. Phenylephrine (10 μM) also induced Ca2+ waves. The locus where HGF-induced Ca2+ waves and phenylephrine-induced Ca2+ waves were originated was the same, and there was a correlation in the peak height between HGF-induced Ca2+ waves and phenylephrine-induced Ca2+ waves in each cell, although the mechanisms of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) formation induced by HGF should be different from those by phenylephrine. On the other hand, there was no correlation between sensitivity of each cell to HGF and that to phenylephrine which were measured as latent periods prior to Ca2+ rises after an addition of the agonists. These results suggested the following: the spatial patterns of Ca2+ waves were decided by a common mechanism, probably not the propagation of Ins(1,4,5)P3 but the distribution of Ins(1,4,5)P3-sensitive Ca2+ pools; sensitivities of each cell to the agonists did not mainly depend on the common mechanism.  相似文献   

18.
We have investigated the effects of epidermal growth factor (EGF) on calcium ion channels in A431 epidermoid carcinoma cells. We have found that: -1- EGF stimulates Ca2+ channels. -2- EGF stimulated Ca2+ channels are voltage independent, exhibit a low conductance (8 pS) and a bursting multichannels activity (BMC). -3- Activation of the tyrosine-kinase function of the EGF receptor is required to generate Ca2+ current. -4- Inositol (1,4,5) triphosphate (Ins (1,4,5) P3) and EGF have similar effect on the channel activation. These results suggest that: stimulation of tyrosine-kinase activity of the EGF receptor, production of Ins (1,4,5)P3 and calcium entry via voltage independent channels are important connected steps in mediating the mitogenic effect of this growth factor.  相似文献   

19.
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.  相似文献   

20.
Vasoactive intestinal contractor (VIC) caused a series of biochemical events, including the temporal biphasic accumulation of 1,2-diacylglycerol (DAG), transient formation of Ins(1,4,5)P3, and increase in intracellular free Ca2+ [( Ca2+]i) in neuroblastoma NG108-15 cells. In these cellular responses, VIC was found to be much more potent in NG108-15 cells than in cultured rat vascular smooth-muscle cells. The single cell [Ca2+]i assay revealed that in the presence of nifedipine (1 microM) or EGTA (1 mM), the peak [Ca2+]i declined more rapidly to the resting level in VIC-stimulated NG108-15 cells, indicating that the receptor-mediated intracellular Ca2+ mobilization is followed by Ca2+ influx through the nifedipine-sensitive Ca2+ channel. Pretreatment with pertussis toxin only partially decreased Ins(1,4,5)P3 generation as well as the [Ca2+]i transient induced by VIC, whereas these events induced by endothelin-1 were not affected by the toxin, suggesting involvement of distinct GTP-binding proteins. The VIC-induced transient Ins(1,4,5)P3 formation coincident with the first early peak of DAG formation suggested that PtdIns(4,5)P2 is a principal source of the first DAG increase. Labelling studies with [3H]myristate, [14C]palmitate and [3H]choline indicated that in neuroblastoma cells phosphatidylcholine (PtdCho) was hydrolysed by a phospholipase C to cause the second sustained DAG increase. Down-regulation of protein kinase C (PKC) by prolonged pretreatment with phorbol ester markedly prevented the VIC-induced delayed DAG accumulation. Furthermore, chelation of intracellular CA2+ completely abolished the second sustained phase of DAG production. These findings suggest that PtdCho hydrolysis is responsible for the sustained production of DAG and is dependent on both Ca2+ and PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号