首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Is *OH the active Fenton intermediate in the oxidation of ethanol?   总被引:2,自引:0,他引:2  
A re-examination of the data of Rush and Koppenol (J. Inorg. Biochem. 29 (1987) 199) on the competitive oxidation of C2H5OH and Fe2+ by Fenton's reagent shows that the ratio of the rate constants of the two reactions is 3.2 and not 6.3. The significance of this finding is that it is not possible to identify the active intermediate in the Fenton reaction with the *OH radical.  相似文献   

2.
Nitric oxide (*NO) can act as an antioxidant by directly scavenging reactive free radicals, inhibiting the oxidative chemistry of iron, and signaling the up-regulation of antioxidant enzymes. However, the cellular utility of *NO as an antioxidant requires that constitutive nitric oxide synthase (NOS) be activated rapidly by a signal(s) for oxidant formation. We report here that superoxide (O2*-), added directly as potassium superoxide (KO2), produced a superoxide dismutase-sensitive and hydrogen peroxide-independent stimulation of NOS activity, measured by the conversion of [3H]arginine to [3H]citrulline and nitrite formation, in a synaptic particulate fraction from rat brain cerebral cortex. O2*- produced maximal activation of NOS in the presence of the antioxidant urate and ATP. Stimulation of NOS activity by O2*- was abolished by N-monomethyl-L-arginine and by the Ca2+ chelator EGTA but not by 7-nitroindazole, which would be expected to inhibit neuronal NOS. We propose that limited activation of NOS by O2*- may be an important contributor to brain oxidant defenses and, more generally, a signal for cellular adaptation and survival, although excessive generation of nitrogen oxides would be expected to produce neurotoxicity.  相似文献   

3.
Recent results demonstrated that S-nitrosoglutathione (GSNO) and nitric oxide (*NO) protect brain dopamine neurons from hydroxyl radical (*OH)-induced oxidative stress in vivo because they are potent antioxidants. GSNO and *NO terminate oxidant stress in the brain by (i) inhibiting iron-stimulated hydroxyl radicals formation or the Fenton reaction, (ii) terminating lipid peroxidation, (iii) augmenting the antioxidative potency of glutathione (GSH), (iv) mediating neuroprotective action of brain-derived neurotrophin (BDNF), and (v) inhibiting cysteinyl proteases. In fact, GSNO--S-nitrosylated GSH--is approximately 100 times more potent than the classical antioxidant GSH. In addition, S-nitrosylation of cysteine residues by GSNO inactivates caspase-3 and HIV-1 protease, and prevents apoptosis and neurotoxicity. GSNO-induced antiplatelet aggregation is also mediated by S-nitrosylation of clotting factor XIII. Thus the elucidation of chemical reactions involved in this GSNO pathway (GSH GS* + *NO-->[GSNO]-->GSSG + *NO-->GSH) is necessary for understanding the biology of *NO, especially its beneficial antioxidative and neuroprotective effects in the CNS. GSNO is most likely generated in the endothelial and astroglial cells during oxidative stress because these cells contain mM GSH and nitric oxide synthase. Furthermore, the transfer of GSH and *NO to neurons via this GSNO pathway may facilitate cell to neuron communications, including not only the activation of guanylyl cyclase, but also the nitrosylation of iron complexes, iron containing enzymes, and cysteinyl proteases. GSNO annihilates free radicals and promotes neuroprotection via its c-GMP-independent nitrosylation actions. This putative pathway of GSNO/GSH/*NO may provide new molecular insights for the redox cycling of GSH and GSSG in the CNS.  相似文献   

4.
The effect nitric oxide (NO*) on the stability of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) adducts has been investigated using EPR spectroscopy. We report that the DMPO/HO* adduct, generated by porcine pulmonary artery endothelial cells in the presence of H2O2 and DMPO, or by a Fenton system (Fe(II)+H2O2) is degraded in the presence of the NO*-donor, 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO) or by bolus addition of an aqueous solution of NO*. A similar effect of DEANO was observed on other DMPO adducts, such as DMPO/*CH3 and DMPO/*CH(CH3)OH, generated in cell-free systems. Measurements of the loss of DMPO/HO* in the presence of DEANO in aerated and oxygen-free buffers showed that in both of these settings the process obeys first-order kinetics and proceeds with similar efficacy. This indicates that direct interaction of the nitroxide with NO*, rather than with NO2* (formed from NO* and O2 in aerated media), is responsible for destruction of the spin adduct. These results suggest that the presence of NO* may substantially affect the quantitative determination of DMPO adducts. We also show that NO2* radicals, generated by a myeloperoxidase/H2O2/nitrite system, also degrade DMPO/HO*. Because DMPO is frequently used to study generation of superoxide and hydroxyl radicals in biological systems, these observations indicate that extra caution is required when studying generation of these species in the presence of NO* or NO2* radicals.  相似文献   

5.
Peroxynitrite (ONOO(-)/ONOOH), the product of the diffusion-limited reaction of nitric oxide (*NO) with superoxide (O(-*)(2)), has been implicated as an important mediator of tissue injury during conditions associated with enhanced *NO and O(-*)(2) production. Although several groups of investigators have demonstrated substantial oxidizing and cytotoxic activities of chemically synthesized peroxynitrite, others have proposed that the relative rates of *NO and production may be critical in determining the reactivity of peroxynitrite formed in situ (Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) J. Biol. Chem. 271, 40-47). In the present study, we examined the mechanisms by which excess O(-*)(2) or *NO production inhibits peroxynitrite-mediated oxidation reactions. Peroxynitrite was generated in situ by the co-addition of a chemical source of *NO, spermineNONOate, and an enzymatic source of O(-*)(2), xanthine oxidase, with either hypoxanthine or lumazine as a substrate. We found that the oxidation of the model compound dihydrorhodamine by peroxynitrite occurred via the free radical intermediates OH and NO(2), formed during the spontaneous decomposition of peroxynitrite and not via direct reaction with peroxynitrite. The inhibitory effect of excess O(-*)(2) on the oxidation of dihydrorhodamine could not be ascribed to the accumulation of the peroxynitrite scavenger urate produced from the oxidation of hypoxanthine by xanthine oxidase. A biphasic oxidation profile was also observed upon oxidation of NADH by the simultaneous generation of *NO and O(-*)(2). Conversely, the oxidation of glutathione, which occurs via direct reaction with peroxynitrite, was not affected by excess production of *NO. We conclude that the oxidative processes initiated by the free radical intermediates formed from the decomposition of peroxynitrite are inhibited by excess production of *NO or O(-*)(2), whereas oxidative pathways involving a direct reaction with peroxynitrite are not altered. The physiological implications of these findings are discussed.  相似文献   

6.
Nitric oxide as a cellular antioxidant: a little goes a long way   总被引:1,自引:0,他引:1  
Nitric oxide (NO*) is an effective chain-breaking antioxidant in free radical-mediated lipid oxidation (LPO). It reacts rapidly with peroxyl radicals as a sacrificial chain-terminating antioxidant. The goal of this work was to determine the minimum threshold concentration of NO* required to inhibit Fe2+ -induced cellular lipid peroxidation. Using oxygen consumption as a measure of LPO, we simultaneously measured nitric oxide and oxygen concentrations with NO* and O2 electrodes. Ferrous iron and dioxygen were used to initiate LPO in docosahexaenoic acid-enriched HL-60 and U937 cells. Bolus addition of NO* (1.5 microM) inhibited LPO when the NO* concentration was greater than 50 nM. Similarly, using (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate as a NO* donor we found that an average steady-state NO* concentration of at least 72 +/- 9 nM was required to blunt LPO. As long as the concentration of NO* was above 13 +/- 8 nM the inhibition was sustained. Once the concentration of NO* fell below this value, the rate of lipid oxidation accelerated as measured by the rate of oxygen consumption. Our model suggests that a continuous production of NO* that would yield a steady-state concentration of only 10-20 nM is capable of inhibiting Fe2+ -induced LPO.  相似文献   

7.
We have reported that low levels of peroxynitrite (PN) can cause inactivation of the heme-thiolate protein prostacyclin (PGI2)-synthase by nitration of a tyrosine residue. To prove that iron catalysis is involved we studied the interaction of PN with microperoxidase and P450nor, a heme-thiolate protein of known structure. Spectral and kinetic analyses allow to conclude on a ferryl nitrogen dioxide complex as an intermediate which decomposes in the presence of an excess of PN under formation of dioxygen, nitrite, and nitrate. This occurs in a catalytic cycle which was more efficient with P450nor than with microperoxidase. If phenol was added to the reaction mixtures of PN and the ferric complexes the ratio of hydroxylated to nitrated phenols decreased compared to the metal-free system. Phenol competed with the formation of dioxygen indicating that the ferryl intermediate was involved in both pathways. One therefore can postulate that the ferryl complex reacts with phenol to give the phenoxyradical which is nitrated in the presence of nitrogen dioxide but does not give hydroxylated products as with metal-free PN. Alternately, the ferryl nitrogen dioxide complex can oxidize a second PN molecule to the radical, *OONO, which can decompose to dioxygen and NO. The latter forms N2O3, with the remaining *NO2 radical. A third pathway consists in the isomerization to nitrate which also is catalyzed by the heme proteins since the ratio of nitrite/nitrate does not change significantly during the catalytic reaction with excess of PN. Our data explain the mechanism of nitration of PGI2-synthase, suggest a role of P450nor as a PN scavenger, and favor heme-thiolate complexes for trapping PN.  相似文献   

8.
The potential for using Fenton's reagent (H2O2 + Fe2+) as an advanced oxidation pretreatment process to enhance microbial transformation of two model polycyclic aromatic hydrocarbons, anthracene and benzo[a]pyrene, in an aqueous system was evaluated. Fenton's reagent at a concentration of 0.5% H2O2 and 10 mM Fe2+ (molar ratio, 15:1) was most effective in transforming anthracene at pH 4. Application of non-ionic surfactants during Fenton's pre-treatment was found to be more effective in the transformation of both anthracene and benzo[a]pyrene. The extent of removal of substrates by a combined Fenton's–biotreatment was 2–4 times higher than with Fenton's treatment or biotreatment alone. In a chemical–biological treatment train, 48 h of Fenton's pre-treatment in the presence of a non-ionic surfactant, followed by 7 days of biological treatment resulted in 80–85% removal of PAHs (100 ppm). Electronic Publication  相似文献   

9.
N-[4-(3)H]Benzoylglycylglycylglycine ([(3)H]BzG(3)) was tested as a probe for detecting hydroxyl radicals (*OH). Aerated solutions of l-ascorbate generated *OH, which oxidized [(3)H]BzG(3), yielding hydrophilic (probably hydroxylated) derivatives plus tritiated water. The (3)H(2)O was separated from organic products and remaining [(3)H]BzG(3) on Dowex-1. (3)H(2)O production was much greater with *OH than with other reactive oxygen species (ROS) (e.g., H(2)O(2), superoxide). The slight (3)H(2)O production in the presence of H(2)O(2) or superoxide was blocked by *OH scavengers (e.g., glycerol, mannitol, butan-1-ol) that do not scavenge H(2)O(2) or superoxide. This indicates that (3)H(2)O production was caused by *OH and that other ROS only generated any (3)H(2)O by forming traces of *OH. Doses of *OH that caused detectable nonenzymic polysaccharide scission also caused (3)H(2)O production, indicating that [(3)H]BzG(3) is a sensitive *OH probe in studies of polymer scission. The ability of scavengers and chelators to protect against ascorbate-mediated polysaccharide scission paralleled their ability to inhibit concurrent (3)H(2)O production, indicating that both processes were due to *OH. Thus, [(3)H]BzG(3) is a simple, specific, sensitive, and robust probe for detecting *OH production in vitro. It may have applications for in vivo detection of extracellular *OH in arthritic joints and of apoplastic *OH in plant cell walls.  相似文献   

10.
Neuroglobin, recently discovered in the brain and in the retina of vertebrates, belongs to the class of hexacoordinate globins, in which the distal histidine coordinates the iron center in both the Fe(II) and Fe(III) forms. As for most other hexacoordinate globins, the physiological function of neuroglobin is still unclear, but seems to be related to neuronal survival following acute hypoxia. In this study, we have addressed the question whether human neuroglobin could act as a scavenger of toxic species, such as nitrogen monoxide, peroxynitrite, and hydrogen peroxide, which are generated at high levels in the brain during hypoxia; we have also investigated the kinetics of the reactions of its Fe(III) (metNGB) and Fe(II)NO forms with several reagents. Binding of cyanide or NO* to metNGB follows bi-exponential kinetics, showing the existence of two different protein conformations. In the presence of excess NO*, metNGB is converted into NGBFe(II)NO by reductive nitrosylation, in analogy to the reactions of NO* with metmyoglobin and methemoglobin. The Fe(II)NO form of neuroglobin is oxidized to metNGB by peroxynitrite and dioxygen, two reactions that also take place in hemoglobin, albeit at lower rates. In contrast to myoglobin and hemoglobin, metNGB unexpectedly does not generate the cytotoxic ferryl form of the protein upon addition of either peroxynitrite or hydrogen peroxide. Taken together, our data indicate that human neuroglobin may be an efficient scavenger of reactive oxidizing species and thus may play a role in the cellular defense against oxidative stress.  相似文献   

11.
Incubation of Trypanosoma cruzi mitochondrial ATPase (Fo-F1) with the xanthine oxidase system (XO), Fenton's reagent (Fe2+ + H2O2) and the ascorbate-Cu system, caused gradual loss of enzyme activity, which increased as a function of incubation time and rate of oxygen radical generation. The essential role of OH. radicals for ATPase inactivation was supported by a) the enzyme protection afforded by superoxide dismutase, catalase and mannitol, when using the XO system; b) the similar effect of mannitol and benzoate with Fenton's reagent; c) the similar effect of catalase, EDTA and histidine with the ascorbate-Cu system; d) the increased rate of ATPase inactivation by 1) the XO system supplemented with chelated iron, and 2) the ascorbate-Cu system supplemented with H2O2. Comparison of oxygen radical generators for their action on membrane-bound (Fo-F1) and soluble F1 revealed that ascorbate-Cu was the most effective one, possibly because of its capability of producing OH. radicals that react preferentially with the enzyme at their formation site.  相似文献   

12.
Nitrogen monoxide (nitric oxide) generated endogenously has a variety of different properties. Among others it regulates blood pressure and transmission of nerve impulses, and has been shown to exert specific toxic effects, but also, paradoxically, to protect against various toxic substances. Recent studies suggest that NO* can serve as an antioxidant of the highly oxidizing ferryl myoglobin (MbFe(IV)=O), which has been proposed to be at least in part responsible for the oxidative damage caused by the reperfusion of ischemic tissues. In the present work we have determined the rate constant for the reaction between MbFe(IV)=O and NO* [(17.9+/-0.5)x10(6)M(-1)s(-1) at pH 7.5 and 20 degrees C] and we have shown that this reaction proceeds via the intermediate nitrito-metmyoglobin complex MbFe(III)ONO. Our results imply that this reaction is very likely to take place in vivo and might indeed represent a detoxifying pathway for both MbFe(IV)=O as well as NO*. Moreover, we have found that the rate of reaction of MbFe(IV)=O with nitrite is significantly lower (16+/-1 M(-1) s(-1) at pH 7.5 and 20 degrees C). Thus, this reaction probably plays a role only when NO* has been consumed completely and large concentrations of nitrite are still present. In contrast to the protecting role of NO*, the reaction with nitrite generates nitrogen dioxide which can contribute to tyrosine nitration. Indeed, we have demonstrated that nitrite can nitrate added tyrosine in the presence of iron(III) myoglobin and hydrogen peroxide.  相似文献   

13.
This study demonstrated the direct formation of the nitrogen dioxide (*NO2) radical during the decomposition of 3-morpholinosydnonimine (SIN-1) in biological buffer 4-morpholinoethanosulfone acid solution. Consequently, at approximately pH 4, SIN-1 can be used successfully as a source of *NO2. This conclusion is drawn from a comparison of the reactions of cis-[Cr(C2O4)(L- L)(OH2)2]+, where L-L denotes pyridoxamine (Hpm) or histamine (hm), with the gaseous *NO2 radical obtained by two methods: from SIN-1 and from a simple redox reaction. These reactions were investigated using the stopped-flow technique. The measurements were carried out at temperatures ranging from 5 to 25 degrees C over a pH range from 6.52 to 9.11 for cis-[Cr(C2O4)(Hpm) (OH2)2]+ and from 6.03 to 8.15 for cis-[Cr(C2O4)(hm)(OH2)2] +. We also determined the thermodynamic activation parameter (E(a)) and the uptake mechanism for each of the coordination compounds studied.  相似文献   

14.
Diesel exhaust particles (DEP) induce pulmonary tumors, asthma-like symptoms, and the like in experimental animals. The involvement of reactive oxygen species (ROS) is suggested in the injuries induced by DEP, though the generation of ROS has not been proven. The present study provided the first direct evidence of *OH generation in the lungs of living mice after intratracheal instillation of DEP, using noninvasive L-band ESR spectroscopy and a membrane-impermeable nitroxyl probe. *OH generation is confirmed with the enhancement of in vivo ESR signal decay rate of the probe. The decay rate at mid-thorax was significantly enhanced in DEP-treated mice compared to that in vehicle-treated mice. The enhancement was completely suppressed by the administration of either *OH scavengers, catalase, or desferrioxamine, while the administration of SOD further increased the rate. The administration of Fenton's reagents into the lung also enhanced the decay rate of the probe at mid-thorax of mice. These results clearly provided evidence that the intratracheal exposure to DEP in mice produced *OH in the lung through an iron-catalyzed reaction of superoxide/H(2)O(2). This first direct evidence of *OH generation in DEP-treated mice lung may be utilized to determine treatments for DEP-induced lung injury.  相似文献   

15.
Microbial flavohemoglobins (flavoHbs) and hemoglobins (Hbs) show large *NO dioxygenation rate constants ranging from 745 to 2900 microM(-1) s(-1) suggesting a primal *NO dioxygenase (NOD) (EC 1.14.12.17) function for the ancient Hb superfamily. Indeed, modern O2-transporting and storing mammalian red blood cell Hb and related muscle myoglobin (Mb) show vestigial *NO dioxygenation activity with rate constants of 34-89 microM(-1) s(-1). In support of a NOD function, microbial flavoHbs and Hbs catalyze O2-dependent cellular *NO metabolism, protect cells from *NO poisoning, and are induced by *NO exposures. Red blood cell Hb, myocyte Mb, and flavoHb-like activities metabolize *NO in the vascular lumen, muscle, and other mammalian cells, respectively, decreasing *NO signalling and toxicity. HbFe(III)-OO*, HbFe(III)-OONO and protein-caged [HbFe(III)-O**NO2] are proposed intermediates in a reaction mechanism that combines both O-atoms of O2 with *NO to form nitrate and HbFe(III). A conserved Hb heme pocket structure facilitates the dioxygenation reaction and efficient turnover is achieved through the univalent reduction of HbFe(III) by associated reductases. High affinity flavoHb and Hb heme ligands, and other inhibitors, may find application as antibiotics and antitumor agents that enhance the toxicity of immune cell-derived *NO or as vasorelaxants that increase *NO signalling.  相似文献   

16.
High-valent iron in chemical and biological oxidations   总被引:1,自引:0,他引:1  
Various aspects of the reactivity of iron(IV) in chemical and biological systems are reviewed. Accumulated evidence shows that the ferryl species [Fe(IV)O](2+) can be formed under a variety of conditions including those related to the ferrous ion-hydrogen peroxide system known as Fenton's reagent. Early evidence that such a species could hydroxylate typical aliphatic C-H bonds included regioselectivities and stereospecificities for cyclohexanol hydroxylation that could not be accounted for by a freely diffusing hydroxyl radical. Iron(IV) porphyrin complexes are also found in the catalytic cycles of cytochrome P450 and chloroperoxidase. Model oxo-iron(IV) porphyrin complexes have shown reactivity similar to the proposed enzymatic intermediates. Mechanistic studies using mechanistically diagnostic substrates have implicated a radical rebound scenario for aliphatic hydroxylation by cytochrome P450. Likewise, several non-heme diiron hydroxylases, AlkB (Omega-hydroxylase), sMMO (soluble methane monooxygenase), XylM (xylene monooxygenase) and T4moH (toluene monooxygenase) all show clear indications of radical rearranged products indicating that the oxygen rebound pathway is a ubiquitous mechanism for hydrocarbon oxygenation by both heme and non-heme iron enzymes.  相似文献   

17.
Nitric oxide (*NO) has been proposed to play a relevant role in modulating oxidative reactions in lipophilic media like biomembranes and lipoproteins. Two factors that will regulate *NO reactivity in the lipid milieu are its diffusion and solubility, but there is no data concerning the actual diffusion (D) and partition coefficients (KP) of *NO in biologically relevant hydrophobic phases. Herein, a "equilibrium-shift" method was designed to directly determine the *NO and O2 partition coefficients in liposomes and low density lipoprotein (LDL) relative to water. It was found that *NO partitions 4.4- and 3.4-fold in liposomes and LDL, respectively, whereas O2 behaves similarly with values of 3.9 and 2.9, respectively. In addition, actual diffusion coefficients in these hydrophobic phases were determined using fluorescence quenching and found that *NO diffuses approximately 2 times slower than O2 in the core of LDL and 12 times slower than in buffer (DNOLDL=3.9 x 10(-6) cm2 s(-1),DO2LDL=7.0 x 10(-6) cm2 s(-1),DNObuffer=DO2buffer=4.5 x 10(-5) cm2 s(-1)). The influence of *NO and O2 partitioning and diffusion in membranes and lipoproteins on *NO reaction with lipid radicals and auto-oxidation is discussed. Particularly, the 3-4-fold increase in O2 and *NO concentration within biological hydrophobic phases provides quantitative support for the idea of an accelerated auto-oxidation of *NO in lipid-containing structures, turning them into sites of enhanced local production of oxidant and nitrosating species.  相似文献   

18.
The interdependent relationships among nitric oxide synthase (NOS), its coenzyme, cofactors and nitric oxide (NO(free radical) were studied using electron paramagnetic resonance spectroscopy. It was found that superoxide-dependent hydroxyl free radical (OH(free radical), derived from NOS coenzyme and cofactors, inhibits NOS activity, and that endogenous NO(free radical) generated by NOS scavenges OH(free radical) and protects NOS function. These results reveal a new role for NO(free radical) that may be important in NOS function and cellular free radical homeostasis.  相似文献   

19.
We studied the effect of nitric oxide (*NO) on the anticancer activity of doxorubicin. When MCF-7 human breast cancer cells were exposed to an aqueous solution of *NO delivered as a bolus 30 min prior to doxorubicin, the cytotoxic effect as measured in a clonogenic assay was increased (doxorubicin alone, 40% survival, doxorubicin plus *NO, 5% survival). The *NO donor diethylamine nitric oxide, but not inactivated donor, also yielded an increase in doxorubicin cytotoxicity. The sequence was important since the simultaneous application of *NO with doxorubicin yielded only a small augmentation of effect, and the exposure of the cells to doxorubicin prior to the *NO obliterated the augmentation. Prior depletion of glutathione by incubation of the cells for 24h with D,L-buthionine-S,R-sulfoximine (BSO) further increased the cytotoxicity so that BSO plus *NO plus doxorubicin killed all of the clones. MCF-7 cells transduced with inducible nitric oxide synthase gene (iNOS) through an adenoviral vector overexpressed iNOS and produced increased amounts of nitrite, an indicator of increased *NO production. These iNOS transduced cells were more susceptible to doxorubicin than vector control or wild-type cells. Cell cycle progression of iNOS transduced cells was not different from controls. Likewise, iNOS transduction resulted in no change in cellular glutathione levels. For comparison, we examined the effect of iNOS transduction on the sensitivity of MCF-7 to edelfosine, a membrane-localizing anticancer drug without direct DNA interaction. Insertion of the iNOS had no effect on killing of the MCF-7 cells by this ether lipid class drug. We also tested the effect of iNOS transduction on doxorubicin sensitivity of H9c2 rat heart-derived myoblasts. We found no augmentation of cytotoxicity by *NO, and this observation offers potential therapeutic tumor selectivity by using *NO with doxorubicin. Therefore, we conclude that *NO produced intracellularly by iNOS overexpression or delivered as a bolus sensitizes human breast cancer cells in culture to doxorubicin, but not to a cardiac cell line or to edelfosine. This augmentation is not due to a modulation of cell cycle distribution or measurable cellular glutathione resulting from the transduction.  相似文献   

20.
A mechanism for the production of hydroxyl radical (*OH) during the oxidation of hydroquinones by laccase, the ligninolytic enzyme most widely distributed among white-rot fungi, has been demonstrated. Production of Fenton reagent (H2O2 and ferrous ion), leading to *OH formation, was found in reaction mixtures containing Pleurotus eryngii laccase, lignin-derived hydroquinones, and chelated ferric ion. The semiquinones produced by laccase reduced both ferric to ferrous ion and oxygen to superoxide anion radical (O2*-). Dismutation of the latter provided the H2O2 for *OH generation. Although O2*- could also contribute to ferric ion reduction, semiquinone radicals were the main agents accomplishing the reaction. Due to the low extent of semiquinone autoxidation, H2O2 was the limiting reagent in Fenton reaction. The addition of aryl alcohol oxidase and 4-methoxybenzyl alcohol (the natural H2O2-producing system of P. eryngii) to the laccase reaction greatly increased *OH generation, demonstrating the synergistic action of both enzymes in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号