首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of stomatal movement is one of the most important signaling networks in plants.The H -ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some conflicting results regarding the effectiveness of the plasma membrane H -ATPase inhibitor,vanadate, in inhibiting stomata opening. We observed that 2 mmol/L vanadate hardly inhibited light-stimulated stomata opening in epidermal peels of Viciafaba L., but significantly inhibited dark- and ABA-induced stomatal closure. These results cannot be explained with the previous findings that H -ATPase was inhibited by vanadate. In view of the fact that vanadate is an inhibitor of protein tyrosine phosphatases (PTPases),we investigated whether the stomatal movement regulated by vanadate is through the regulation of PTPase.As expected, phenylarsine oxide (PAO), a specific inhibitor of PTPase, has very similar effects and even more effective than vanadate. Typical PTPase activity was found in guard cells of V. faba; moreover, the phosphatase activity could be inhibited by both vanadate and PAO. These results not only provide a novel explanation for conflicting results about vanadate modulating stomatal movement, but also provide further evidence for the involvement of PTPases in modulating signal transduction of stomatal movement.  相似文献   

2.
Ultraviolet-B radiation induces complex alterations in stomatal behaviour   总被引:3,自引:0,他引:3  
Both visible and UV wavelengths play an important role in controlling stomatal aperture. We have analysed effects of UV-B radiation on stomatal aperture in Vicia faba , and found them to be complex. Depending on the metabolic state of the guard cell, high fluences of UV-B either stimulate stomatal opening or stomatal closing. Neither of these responses is readily reversed, i.e. once stomata have been exposed to UV-B, they are unable to re-adjust their aperture in response to environmental stimuli like changes in light, humidity or ABA. This lack of responsiveness is unlikely to be due to widespread cellular damage, as UV-induced stomatal closure is largely reverted in response to the H+-ATPase activator fusicoccin. It is speculated that UV-B impacts upstream from the plasmalemma based enzyme complexes which facilitate the solute fluxes leading to stomatal opening. Our data may help accommodate seemingly contradictory reports on the effects of UV-B on stomatal aperture and/or conductance.  相似文献   

3.
4.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   

5.
PPI1 (proton pump interactor isoform 1) is a novel protein able to interact with the C-terminal autoinhibitory domain of the Arabidopsis thaliana plasma membrane (PM) H+-ATPase. In vitro, PPI1 binds the PM H+-ATPase in a site different from the known 14-3-3 binding site and stimulates its activity. In this study, we analysed the intracellular localisation of PPI1. The intracellular distribution was monitored in A. thaliana cultured cells by immunolocalisation using an antiserum against the PPI1 N-terminus and in Vicia faba guard cells and epidermal cells by transient expression of a GFP::PPI1 fusion. The results indicate that the bulk of PPI1 is localised at the endoplasmic reticulum, from which it might be recruited to the PM for interaction with the H+-ATPase in response to as yet unidentified signals.  相似文献   

6.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   

7.
Micromolar concentrations of potassium ferricyanide inhibit light-induced stomatal opening. The extent of the inhibition is dependent on the presence of carbon dioxide and the concentration of potassium ferricyanide needed to obtain 50% inhibition of stomatal opening is 40-fold higher in CO2-free air than in normal air. The fungal toxin, fusicoccin (1 μ M ), overcame the ferricyanide inhibition of stomatal opening indicating that the electron acceptor may interact more or less directly with the activity of the plasma membrane H+-ATPase. Although potassium ferricyanide strongly inhibited stomatal opening, it had only minor effects on stomatal maintaining or stomatal closure due to darkness or ABA.  相似文献   

8.
White lupin ( Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.  相似文献   

9.
Abstract Non-linear dielectric spectroscopy is a novel technique for determining the activity of (predominantly) membranous enzymes as their ability to generate harmonics when excited with a sinusoidal electrical field. In washed suspensions of yeast cells, the ability to generate harmonics is inhibited by low concentrations of sodium vanadate, suggesting that the vanadate-sensitive H+-ATPase is the major source of the non-linear dielectricity. This conclusion is greatly strengthened by the demonstration herein that the generation of harmonics by a strain containing a vanadate-resistant H+-ATPase is also highly resistant to sodium metavanadate.  相似文献   

10.
Embryos kept with omeprazole, a specific H+, K+-ATPase inhibitor, in a period of development between the mesenchyme blastula and the pluteus corresponding stage became abnormal plutei having quite small spicules, somewhat poor pluteus arms and apparently normal archenterons. In micro-mere-derived cells, kept with omeprazole at pH 8.2 in a period between 15 and 40 hr of culture at 20°C, omeprazole strongly inhibited spicule formation but did not block the outgrowth of pseudopodial cables, in which spicule rods were to be formed. These indicate that omeprazole probably exerts no obvious inhibitory effects other than spicule rods formation. Omeprazole-sensitive H+, K+-ATPase, an H+pump, seems to be indispensable for CaCO3 deposition (formation of spicule rod) in these spicule forming cells. H+, produced in overall reaction for CaCO3 formation: Ca2++ CO2+H2O°CaCO3+2H+, is probably released from the cells by this H+pump and hence, this reaction tends to go to CaCO3 production to form spicule rods. Omeprazole, known to become effective following its conversion to a specific inhibitor of H+, K+-ATPase at acidic pH, is able to inhibit formation of spicule rod at alkaline pH in sea water. This is probably due to an acidification of sea water near the cell surface by H+ejection in H+, K+-ATPase reaction.  相似文献   

11.
Syringostatin is a newly discovered phytotoxin produced by a phytopathogenic bacterium Pseudomonas syringae pv. syringae lilac isolate. The effects of syringostatin and the similar phytotoxins, syringomycin and syringotoxin, on H-ATPase activity were investigated using cultured mung bean ( Vigna radiata L. cv. Ryokuto) cells or plasma membrane vesicles isolated from mung bean hypocotyls. 31P-NMR analysis of cultured cells treated with syringostatin revealed that the cytoplasmic pH was decreased. When plasma membrane was prepared by a two-step method (Dextran gradient followed by a sucrose gradient). syringostatin, syringomycin and syringotoxin inhibited the H+-ATPase activity in a dose-dependent manner. In contrast, these toxins stimulated H+-ATPase activity when plasma membrane was prepared by a one-step method (sucrose gradient). While these toxins inhibited the H+-ATPase activity of inside-out plasma membrane vesicles, the H+-ATPase activity of right-side-out vesicles was stimulated. The detergent. Triton X-100, abolished this stimulatory effect of the toxins on the H+-ATPase of right-side-out vesicles and of one-step purified plasma membrane. The toxins also inhibited the activity of the plasma membrane H+-ATPase solubilized with deoxycholate and Zwittergent 3–14. Taken together, these results indicate that these toxins exert their effects partly by a detergent-like action on the plasma membrane and partly by inhibition of the enzyme.  相似文献   

12.
The regulation of the H+-ATPase of plasma membrane is a crucial point in the integration of transport processes at this membrane. In this work the regulation of H+-ATPase activity induced by changes in turgor pressure was investigated and compared with the stimulating effect of fusicoccin (FC). The exposure of cultured cells of Arabidopsis thaliana L. (ecotype Landsberg 310–14-2) to media containing mannitol (0. 15 or 0. 3 M ) or polyethylene glycol 6000 (PEG) (15. 6% or 22% w/v) resulted in a decrease in the turgor pressure of the cells and in a strong stimulation of H+ extrusion in the incubation medium. The osmotica-induced H+ extrusion was (1) inhibited by the inhibitor of plasma membrane H+-ATPase, erythrosin B (EB), (2) dependent on the external K+ concentration, (3) associated with a net K+ influx, and (4) lead to an increase of cellular malate content. These results show that the reduction of external osmotic potential stimulates the activity of plasma membrane H+-ATPase
The effect of mannitol was only partially inhibited by treatments with cycloheximide (CH) and cordycepin, which block protein and mRNA synthesis, respectively. All the effects of osmotica were qualitatively and quantitatively similar to those induced by 5 μ M FC. However, when FC and mannitol (or PEG) were fed together, their effects on H+ extrusion appeared synergistic, irrespective of whether FC was present at suboptimal or optimal concentrations. This behaviour suggests that the modes of action of FC and of the osmotica on H+-ATPase activity differ at least in some step(s)  相似文献   

13.
As water and nutrient uptake should be related in the response of plants to salinity, the aim of this paper is to establish whether or not aquaporin functionality is related to H+-ATPase activity in root cells of pepper ( Capsicum annuum L.) plants. Thus, H+-ATPase activity was measured in plasma membrane vesicles isolated from roots and aquaporin functionality was measured using a cell pressure probe in intact roots. Salinity was applied as 60 m M NaCl or 60 m M KCl, to determine which ion (Na+, K+ or Cl) is producing the effects. We also investigated whether the effects of both salts were ameliorated by Ca2+. Similar results were obtained for cell hydraulic conductivity, Lpc, and H+-ATPase activity, large reductions in the presence at NaCl or KCl and an ameliorative effect of Ca2+. However, fusicoccin (an activator of H+-ATPase) did not alter osmotic water permeability of protoplasts isolated from roots. Addition of Hg2+ inhibited both ATPase and aquaporins, but ATPase also contains Hg-binding sites. Therefore, the results indicate that H+-ATPase and aquaporin activities may not be related in pepper plants.  相似文献   

14.
In embryos of the sea urchin, Hemicentrotus pulcherrimus , as well as in cultured cells derived from isolated micromeres, spicule formation was inhibited by allylisothiocyanate, an inhibitor of H+, K+-ATPase, at above 0.5 μM and was almost completely blocked at above 10 μM. Amiloride, an inhibitor of Na+, H+ antiporter, at above 100 μM exerted only slight inhibitory effect, if any, on spicule formation. Intravesicular acidification, determined using [ dimethylamine -14C]-aminopyrine as a pH probe, was observed in the presence of ATP and 200 mM KCl in microsome fraction obtained from embryos at the post gastrula stage, at which embryos underwent spicule calcification. Intravesicular acidification and K+-dependent ATPase activity were almost completely inhibited by allylisothiocyanate at 10 μM. Allylisothiocyanate-sensitive ATPase activity was found mainly in the mesenchyme cells with spicules isolated from prisms. H+, K+-ATPase, an H+ pump, probably mediates H+ release to accelerate CaCO3 deposition from Ca2+, CO2 and H2O in the primary mesenchyme cells. Intravesicular acidification was stimulated by valinomycin at the late gastrula and the prism stages but not at the pluteus stage. K+ permeability probably increases after the prism stage to activate H+ release.  相似文献   

15.
Abstract: A putative consensus domain for binding of 14-3-3 proteins to the plasma membrane (PM) H+-ATPase was identified in the highly-conserved sequence RSR(p)SWSF [where (p)S is Ser776 of the maize isoform MHA2], localized in the cytosolic stretch connecting transmembrane segments 8 and 9. A 15 amino acid biotinylated phosphopeptide comprising this motif: i) bound a recombinant 14-3-3 protein, ii) inhibited fusicoccin-induced stimulation of the PM H+-ATPase activity both in PM isolated from germinating radish ( Raphanus sativus L.) seedlings and in ER isolated from Saccharomyces cerevisiae expressing AHA1 (an isoform of Arabidopsis thaliana PM H+-ATPase), and iii) inhibited fusicoccin binding to PM isolated from germinating radish seedlings. The corresponding non-phosphorylated peptide was inactive in all the performed assays. Together, these results suggest that the cytosolic strand connecting transmembrane segments 8 and 9 of the PM H+-ATPase is a 14-3-3 binding site which might cooperate with the C-terminal domain of the'enzyme in generating a stable association between the H+-ATPase and 14-3-3 protein.  相似文献   

16.
Gao XQ  Li CG  Wei PC  Zhang XY  Chen J  Wang XC 《Plant physiology》2005,139(3):1207-1216
Stomatal movement is important for plants to exchange gas with environment. The regulation of stomatal movement allows optimizing photosynthesis and transpiration. Changes in vacuolar volume in guard cells are known to participate in this regulation. However, little has been known about the mechanism underlying the regulation of rapid changes in guard cell vacuolar volume. Here, we report that dynamic changes in the complex vacuolar membrane system play a role in the rapid changes of vacuolar volume in Vicia faba guard cells. The guard cells contained a great number of small vacuoles and various vacuolar membrane structures when stomata closed. The small vacuoles and complex membrane systems fused with each other or with the bigger vacuoles to generate large vacuoles during stomatal opening. Conversely, the large vacuoles split into smaller vacuoles and generated many complex membrane structures in the closing stomata. Vacuole fusion inhibitor, (2s,3s)-trans-epoxy-succinyl-l-leucylamido-3-methylbutane ethyl ester, inhibited stomatal opening significantly. Furthermore, an Arabidopsis (Arabidopsis thaliana) mutation of the SGR3 gene, which has a defect in vacuolar fusion, also led to retardation of stomatal opening. All these results suggest that the dynamic changes of the tonoplast are essential for enhancing stomatal movement.  相似文献   

17.
NaCl-induced changes in the accumulation of message for the 70 kDa subunit of the tonoplast H+-ATPase and plasma membrane H+-ATPase were studied in hydroponically grown plants of Lycopersicon esculentum Mill. cv. Large Cherry Red. There was increased accumulation of message for the 70 kDa (catalytic) subunit of the tonoplast H+-ATPase in expanded leaves of tomato plants 24 h after final NaCl concentrations were attained. This was a tissue-specific response; levels of this message were not elevated in roots or in young, unexpanded leaves. The NaCl-induced accumulation of this message was transient in the expanded leaves and returned to control levels within 7 days. The temporal and spatial patterns of NaCl-induced accumulation of message for the plasma membrane H+-ATPase differed from the patterns associated with the 70 kDa subunit of the tonoplast H+-ATPase. NaCl-induced accumulation of the plasma membrane H+-ATPase message occurred in both roots and expanded leaves. Initially accumulation of the plasma membrane H+-ATPase message was greater in root tissue than in expanded leaves, but increased to higher levels in expanded leaves after 7 days. These results suggest that increased expression of the tonoplast H+-ATPase is an early response to salinity stress and may be associated with survival mechanisms, rather than with long-term adaptive processes.  相似文献   

18.
Plasma membrane-enriched samples were extracted from pepino fruit (cv. El Camino) by phase partitioning. H+-ATPase (EC 3.6.1.35) activity in these samples increased during late fruit development (immediately before the onset of ripening) and western blotting confirmed there was an increase in enzyme abundance at this time. H+-ATPase activity decreased during early ripening and then increased again in the final phase of ripening. Immunolocalisation showed the plasma membrane H+-ATPase was most abundant in the outer cell layers of the fruit, which are considered to have a major role in determining fruit texture. Fruit softening was not accelerated by harvest and there was no stimulation of H+-ATPase activity by harvest. An in vitro tensile test using fruit rings showed tissue softening proceeded faster at low apoplastic pH (4.5) than at pH 6.5; and tissue buffered at pH 6.5 softened less than unbuffered rings. Erythrosin B, an inhibitor of the plasma membrane H+-ATPase, also retarded softening in vitro. These data suggest that plasma membrane H+-ATPase activity may contribute to the onset of pepino softening through a reduction in apoplastic pH.  相似文献   

19.
The essential role of brassinosteroids (BRs) in normal plant growth, development and physiology has been established by the analysis of biosynthesis and signal transduction mutants. Some of the BR-related mutants also display altered sensitivity to the phytohormone abscisic acid (ABA) suggesting that BRs normally counteract the effects of ABA on root growth, seed germination, and possibly stomatal movement. In this study, the effect of a specific BR, brassinolide (BL), on guard cell function of Vicia faba was examined alone and in conjunction with ABA. Unlike other described plant responses, BL did not oppose the effect of ABA in regulation of stomatal movement. On the contrary, BL modulated stomatal aperture by promoting stomatal closure and inhibiting stomatal opening, functions of this hormone that were previously undescribed. This study also demonstrated a role for plant steroidal hormones in ion channel regulation: BL inhibited inwardly rectifying K+ currents of V. faba guard cell protoplasts in a manner similar to ABA. In both stomatal movement assays and whole-cell patch clamp experiments, the effects of BL and ABA applied together were not additive, suggesting that these two hormones may function in interacting pathways to regulate stomatal apertures and guard cell physiology.  相似文献   

20.
Abstract: Nitric oxide (NO; including NO, NO+, and NO) was found to inhibit glutamate uptake by isolated synaptic vesicles of rat brain. This was observed when two unrelated NO donors, S -nitrosogluthathione and S -nitroso- N -acetylpenicillamine, were used. The primary target of NO is the H+-ATPase found in the synaptic vesicles, which leads to dissipation of the electrochemical proton gradient and inhibition of glutamate uptake. Oxyhemoglobin (12 µ M ) and, to a much lesser extent, methemoglobin protected the vacuolar H+-ATPase from inhibition. Inhibition of H+ pumping by NO was reversed by addition of 0.5 m M dithiothreitol. The results indicate that the vacuolar H+-ATPase from synaptic vesicles is inhibited by NO by a mechanism that involves S -nitrosylation of critical sulfhydryl groups in the enzyme. The interaction of NO with synaptic vesicles might be of importance for the understanding of the multiple effects of NO in neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号