首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strategy is described that allows the development of polymorphic genetic markers to be characterized in individual genes. Segments of the 3' untranslated regions are amplified, and polymorphisms are detected by digestion with frequently cutting enzymes and with the detection of single-stranded conformation polymorphisms. This allows these genes, or DNA segments, to be placed on the linkage maps of human chromosomes. Polymorphisms in two genes have been identified using this approach. A HaeIII polymorphism was detected in the KIT proto-oncogene, physically assigned to chromosome 4q11-12. This polymorphism is linked to other chromosome 4p markers and is in linkage disequilibrium with a HindIII polymorphism previously described at this locus. We have also identified in the insulin-like growth factor1 receptor gene (IGF1R) a 2-bp deletion that is present at a frequency of .25 in the Caucasian population. Pedigree analysis with this insertion/deletion polymorphism placed the IGF1R gene at the end of the current linkage map of chromosome 15q, consistent with the physical assignment of 15q2526. Thus, polymorphisms in specific genes can be used to related the physical, genetic, and comparative maps of mammalian genomes and to simplify the testing of candidate genes for human diseases.  相似文献   

2.
The random amplification of polymorphic DNA (RAPD) using primers of arbitrary nucleotide sequence has been extremely valuable in identifying heritable markers in a variety of systems. The present studies examined whether the RAPD technique can identify large numbers of polymorphisms that can be used to construct genetic maps in inbred strains of mice. By screening the inbred mouse strains C57BL/6J and DBA/2J with 481 random 10-mer oligonucleotide primers, we identified 95 polymorphisms and mapped 76 of these by use of the BXD series of recombinant inbred (RI) strains. The results clearly demonstrate that the RAPD technique allows for the identification of large numbers of DNA-based polymorphisms that distinguish these two inbred strains of mice,and that such markers can readily be used to construct molecular genetic linkage maps.  相似文献   

3.
Genetic mapping by single sperm typing   总被引:1,自引:0,他引:1  
N. ARNHEIM  H. LI  X. CUI 《Animal genetics》1991,22(2):105-115
The polymerase chain reaction makes it possible to analyse DNA sequences in a single cell and has led to a new approach for constructing genetic maps. We describe a procedure called 'sperm typing' which can accurately classify individual meiotic products as recombinant of non-recombinant. This permits the linkage relationships among DNA polymorphisms to be determined without pedigree analysis.  相似文献   

4.
林木种子及苗木鉴别技术的准确性和可靠性是提高营林造林质量的关键环节。传统的种苗鉴别技术的局限性往往使之不能有效鉴别林木种子的品种及种源。DNA遗传标记技术则能提供稳定、准确、可靠的种及品种特异性标记,因而成为林业生产上极具潜力的品种鉴定手段。本文综述了目前国际上DNA遗传标记技术的研究进展,并讨论了开展我国林木种苗DNA鉴定技术研究的若干设想。  相似文献   

5.
The rapid decrease in the cost of DNA sequencing will enable its use for novel applications. Here, we investigate the use of DNA sequencing for simultaneous discovery and genotyping of polymorphisms in family linkage studies. In the proposed approach, short contiguous segments of genomic DNA, regularly spaced across the genome, are resequenced in each pedigree member, and all sequence polymorphisms discovered within a pedigree are used as genetic markers. We use computer simulations consistent with observed human sequence diversity to show that segments of 500-1,000 base pairs, spaced at intervals of 1-2 Mb across the genome, provide linkage information that equals or exceeds that of traditional marker-based approaches. We validate these results experimentally by implementing the sequence-based linkage approach for chromosome 19 in CEPH pedigrees.  相似文献   

6.
Chromosome IV is the smallest chromosome of Aspergillus nidulans. The centromere-proximal portion of the chromosome was mapped physically using overlapping clones of a cosmid genomic library. Two contiguous segments of a physical map, based on restriction mapping of cosmid clones, were generated, together covering more than 0.4 Mb DNA. A reverse genetic mapping approach was used to establish a correlation between physical and genetic maps; i.e., marker genes were integrated into physically mapped segments and subsequently mapped by mitotic and meiotic recombination. The resulting data, together with additional classical genetic mapping, lead to a substantial revision of the genetic map of the chromosome, including the position of the centromere. Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis. The portion of the chromosome containing the functional centromere was not mapped because repeat-rich regions hindered further chromosome walking. The size of the missing segment was estimated to be between 70 and 400 kb.  相似文献   

7.
DNA segments containing GT/AC dinucleotide repeats in the chimpanzee (Pan troglodytes) genome were screened. Thirteen transformedE. coli colonies were identified with the (GT)10 probe to have chimpanzee DNA fragments containing (GT)n repeats. These potentially polymorphic (variable n) DNA segments were sequenced. Primers for the polymerase chain reaction (PCR) amplifying these DNA segments were designed. Six pairs of primers yielded polymorphic PCR products. Three of them revealed considerable length polymorphisms and heterozygosities in a group of captive chimpanzees. For studies on chimpanzees in the wild and in captivity, these primers should be useful for paternity testing, for investigating genetic variations, and for improving the genetic maintenance of breeding colonies. The strategy adopted in the present study to obtain PCR primers amplifying polymorphic microsatellite DNA segments may well be applicable to almost all eukaryotic organisms.  相似文献   

8.
The genetic diversity between the t12 and tw5 haplotype chromosomes was studied by analyzing the molecular organization of the H-2K region. Twenty-one cosmid clones spanning over 150 kb of the H-2K region of both t-haplotypes were defined, and high resolution restriction maps were determined. Detailed comparison of the t12 and tw5 restriction maps revealed the following. (i) The H-2K regions of both t-haplotypes retain a very similar molecular organization to that reported for B10, BALB/c and AKR. The nucleotide sequence diversity estimated from restriction site polymorphism is 0.68% between the t12 and tw5 haplotypes; these two t-haplotypes are no more similar to one another than BALB/c is to AKR. (ii) Genetic recombination is strongly implicated in generating H-2 polymorphism. (iii) Genetic polymorphisms, defined as small restriction fragment size differences, are observed at multiple sites along the H-2K region. An Alu-like B2 sequence and BAM5-R homologous sequence were identified as the inserted/deleted DNA segments of two of these sites, suggesting that insertion/deletion of mobile elements is a general mechanism for generating genetic diversity.  相似文献   

9.
Yeast mitochondrial DNA contains a genetic locus, called the tRNA synthesis locus, which codes for information necessary for mitochondrial tRNA biosynthesis. A 9S RNA molecule coded by this locus is thought to be the trans-acting element required for the removal of 5' extensions from tRNA precursors. The DNA coding for this RNA maps to a region of mitochondrial DNA known to contain strain specific restriction site polymorphisms. Comparison of the tRNA synthesis locus in two such strains by sequence analysis demonstrates that the restriction enzyme polymorphisms are due to the deletion/insertion of a 50 base pair GC-rich element in the 5' flanking sequence of the 9S RNA coding region. There are also several differences between the 9S RNA coding region of these two strains which do not interfere with the tRNA synthesis function.  相似文献   

10.
 We report a strategy for developing codominant PCR-based genetic markers by using sequenced cDNA clones from loblolly pine (Pinus taeda L.). These clones were previously used as probes for detecting restriction fragment length polymorphisms (RFLPs) to generate linkage maps. After assessing the complexity of banding patterns from Southern blots, we selected clones representing relatively simple gene families, and then determined nucleotide sequences for about 200 bp at each end of the cDNA inserts. Specific PCR primers were designed to amplify samples of genomic DNA derived from two loblolly pine mapping populations. Polymorphisms were detected after digesting the amplified DNA fragments with a battery of restriction endonucleases, and most polymorphisms were inherited in a Mendelian fashion. These newly identified genetic markers are codominant and relatively simple to use. By assaying DNA from individuals used to construct RFLP maps, we show that most of these markers map to the same position as the RFLP loci detected using their corresponding cDNAs as probes, implying that these markers have been converted from RFLP to PCR-based methods. These PCR-based markers will be useful for genome mapping and population genetics. Received: 10 February 1998 / Accepted: 25 February 1998  相似文献   

11.
Molecular marker technologies for plant improvement   总被引:6,自引:0,他引:6  
The exploitation of DNA polymorphisms by an ever-increasing number of molecular marker technologies has begun to have an impact on plant genome research and breeding. Restriction fragment length polymorphisms, micro- and mini-satellites and PCR-based approaches are used to determine inter- and intra-specific genetic diversity and construct molecular maps of crops using specially designed mapping populations. Resistance genes and other agronomically important loci are tagged with tightly linked DNA markers and the genes isolated by magabase DNA technology and cloning into yeast artificial chromosomes (YAC). This review discusses some recent developments and results in this field.The authors are with Plant Molecular Biology; Biozentrum, Frankfurt University, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany  相似文献   

12.
Summary Several studies have indicated a noncorrespondence between genetic and physical distances in wheat chromosomes. To study the physical distribution of recombination, polymorphism for C-banding patterns was used to monitor recombination in 67 segments in 11 B-genome chromosome arms of Triticum turgidum. Recombination was absent in proximal regions of all chromosome arms; its frequency increased exponentially with distance from the centromere. A significant difference was observed between the distribution of recombination in physically short and physically long arms. In physically short arms, recombination was almost exclusively concentrated in distal segments and only those regions were represented in their genetic maps. In physically long arms, while a majority of the genetic distance was again based upon recombination in distal chromosome segments, some interstitial recombination was observed. Consequently, these regions also contributed to the genetic maps. Such a pattern of recombination, skewed toward terminal segments of chromosomes, is probably a result of telomeric pairing initiation and strong positive chiasma interference. Interference averaged 0.81 in 35 pairs of adjacent segments and 0.57 across the entire recombining portions of chromosome arms. The total genetic map lengths of the arms corresponded closely to those expected on the basis of their metaphase-I chiasma frequencies. As a consequence of this uneven distribution of recombination there can be a 153-fold difference (or more) in the number of DNA base pairs per unit (centiMorgan) of genetic length.  相似文献   

13.
Using a combination of denaturing gradient gel electrophoresis and direct DNA sequencing, we have found that multiple (4 to 7) biallelic sequence polymorphisms can be located within short DNA segments, 300 to 2400 bp. Here, we report on the identification of three clusters of DNA polymorphisms, one in each of the constant regions of the human T cell receptor alpha and beta gene complexes on human chromosomes 14 and 7, respectively, and a third among the human t-RNA genes on human chromosome 14. The frequency of these polymorphisms and the extent of linkage disequilibrium between individual polymorphisms have been determined using a semiautomated DNA typing system combining DNA target amplification by the polymerase chain reaction with the analysis of internal sequence polymorphisms by a colorimetric oligonucleotide ligation assay. We have found that individual biallelic polymorphisms in each cluster are often in partial linkage disequilibrium with one another. This partial linkage disequilibrium permits the combined use of three to four markers in a cluster to generate a haplotype with high levels of heterozygosity, 71 to 88%. Therefore, clusters of physically linked biallelic polymorphisms provide an automatable and highly informative type of genetic marker for general linkage analysis as well as an attractive alternative marker system for fine-point mapping of disease-causing genes and phenotypic traits relative to their framework locations in the genome.  相似文献   

14.
RAPD markers for constructing intraspecific tomato genetic maps   总被引:8,自引:0,他引:8  
The existing molecular genetic maps of the tomato, Lycopersicon spp, are constructed based on isozyme and RFLP polymorphisms between tomato species. These maps are useful for certain applications but have few markers that exhibit sufficient polymorphisms for intraspecific analysis and manipulations within the cultivated tomato. The purpose of this study was to investigate the relative potential of RAPD technology, as compared to isozymes and RFLPs, to generate polymorphic DNA markers within cultivated tomatoes. Sixteen isozymes and 25 RFLP clones that were known to detect polymorphism between L. esculentum and L. pennellii, and 313 random oligonucleotide primers were examined. None of the isozymes and only four of the RFLP clones (i.e., 16%) revealed polymorphism between the cultivated varieties whereas up to 63% of the RAPD primers detected one or more polymorphic DNA fragments between these varieties. All RAPD primers detected polymorphism between L. esculentum and L. pennellii genotypes. These results clearly indicate that RAPD technology can generate sufficient genetic markers exploiting sequence differences within cultivated tomatoes to facilitate construction of intraspecific genetic maps.Abbreviations RFLP restriction fragments length polymorphism - RAPD random amplified polymorphic DNA - PCR polymerase chain reaction - QTLs quantitative trait loci  相似文献   

15.
Evaluating the potential genetic components of complex disease will likely be aided through the use of dense polymorphism maps. Previously, we reported evidence for linkage with diabetic nephropathy on chromosome 3q in a region encompassing the type 1 angiotensin II receptor (AGTR1) gene. To further investigate any role for this gene in disease onset, we set out to design a dense polymorphism map spanning the AGTR1 locus for the purpose of association studies. Toward this goal, we have developed a technique for rapid identification of polymorphisms in long stretches of genomic DNA. This approach uses long-range PCR, DNA pooling, and transposon-based DNA sequencing. Using this technique, we efficiently validated and genotyped 18 polymorphisms spanning the 60.5-kb AGTR1 locus. Our panel of polymorphisms has an average spacing of 3.2 kb and an average minor allele frequency of 24%.  相似文献   

16.
Chinen A  Uchiyama I  Kobayashi I 《Gene》2000,259(1-2):109-121
Recent work suggests that restriction-modification gene complexes are mobile genetic elements that insert themselves into the genome and cause various genome rearrangements. In the present work, the complete genome sequences of Pyrococcus horikoshii and Pyrococcus abyssi, two species in a genus of hyperthermophilic archaeon (archaebacterium), were compared to detect large genome polymorphisms linked with restriction-modification gene homologs. Sequence alignments, GC content analysis, and codon usage analysis demonstrated the diversity of these homologs and revealed a possible case of relatively recent acquisition (horizontal transfer). In two cases out of the six large polymorphisms identified, there was insertion of a DNA segment with a modification gene homolog, accompanied by target deletion (simple substitution). In two other cases, homologous DNA segments carrying a modification gene homolog were present at different locations in the two genomes (transposition). In both cases, substitution (insertion/deletion) in one of the two loci was accompanied by inversion of adjacent chromosomal segment. In the fifth case, substitution by a DNA segment carrying type I restriction, modification, and specificity gene homologs was likewise accompanied by adjacent inversion. In the last case, two homologous DNA segments, were found at different loci in the two genomes (transposition), but only one of them had insertion of a modification homolog and an unknown ORF. The possible relationship of these polymorphisms to attack by restriction enzymes on the chromosome will be discussed.  相似文献   

17.
E. S. Lander  D. Botstein 《Genetics》1989,121(1):185-199
The advent of complete genetic linkage maps consisting of codominant DNA markers [typically restriction fragment length polymorphisms (RFLPs)] has stimulated interest in the systematic genetic dissection of discrete Mendelian factors underlying quantitative traits in experimental organisms. We describe here a set of analytical methods that modify and extend the classical theory for mapping such quantitative trait loci (QTLs). These include: (i) a method of identifying promising crosses for QTL mapping by exploiting a classical formula of SEWALL WRIGHT; (ii) a method (interval mapping) for exploiting the full power of RFLP linkage maps by adapting the approach of LOD score analysis used in human genetics, to obtain accurate estimates of the genetic location and phenotypic effect of QTLs; and (iii) a method (selective genotyping) that allows a substantial reduction in the number of progeny that need to be scored with the DNA markers. In addition to the exposition of the methods, explicit graphs are provided that allow experimental geneticists to estimate, in any particular case, the number of progeny required to map QTLs underlying a quantitative trait.  相似文献   

18.
Summary Genetic linkage maps were constructed for both maize and tomato, utilizing restriction fragment length polymorphisms (RFLPs) as the source of genetic markers. In order to detect these RFLPs, unique DNA sequence clones were prepared from either maize or tomato tissue and hybridized to Southern blots containing restriction enzyme-digested genomic DNA from different homozygous lines. A subsequent comparison of the RFLP inheritance patterns in F2 populations from tomato and maize permitted arrangement of the loci detected by these clones into genetic linkage groups for both species.  相似文献   

19.
A simulation study was used to examine the consequences of karyotypic rearrangements on molecular genetic map construction. Two groups of 50 datasets were created for F2 populations segregating for a reciprocal translocation of chromosomal segments or a reciprocal translocation and inversion. Multiple attempts were made to construct maps for each dataset using MapMaker/EXP. As expected, the markers from segments involved in the translocation formed one linkage group. Maps that corresponded to the known marker order within a segment could be constructed by the following method. The separation of markers distal to the translocation breakpoints into their respective segments could be made by constructing multiple maps, using distinct orders of marker entry, and observing the variances in intermarker distances: variances between pairs of markers from the same segment were an order of magnitude less compared to pairs where markers were from different segments. The order of markers within a segment could be determined from combining the pairwise linkage results from multiple maps, or from maps including all markers from a segment. No bias in map distances was observed. These results indicate that, under conditions similar to those tested, genetic maps corresponding to the segments conserved in translocations can be constructed.  相似文献   

20.
Recombinant DNA methodology has greatly increased our knowledge of the molecular pathology of the human genome at the same time as providing the means of diagnosing inherited disease at the DNA level. Direct detection and analysis of a wide range of genetic lesions are now possible using cloned gene or oligonucleotide probes or by direct sequencing of the disease gene(s). In addition, the use of restriction fragment length polymorphisms (RFLPs) within and around these genes as indirect genetic markers has potentiated the tracking of disease alleles in affected pedigrees in cases where direct analysis is not yet feasible. RFLPs associated with linked anonymous DNA segments may also be used not only to diagnose hitherto undetectable disease states, but also for the chromosomal localization of the loci responsible. We present here an update to our previous list of reports describing the direct and indirect analysis/diagnosis of human inherited disease. This compilation is intended to serve as a guide to current molecular genetic approaches in diagnostic medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号