首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal structure of human rhinovirus serotype 1A (HRV1A)   总被引:21,自引:0,他引:21  
The structure of human rhinovirus 1A (HRV1A) has been determined to 3.2 A resolution using phase refinement and extension by symmetry averaging starting with phases at 5 A resolution calculated from the known human rhinovirus 14 (HRV14) structure. The polypeptide backbone structures of HRV1A and HRV14 are similar, but the exposed surfaces are rather different. Differential charge distribution of amino acid residues in the "canyon", the putative receptor binding site, provides a possible explanation for the difference in minor versus major receptor group specificities, represented by HRV1A and HRV14, respectively. The hydrophobic pocket in VP1, into which antiviral compounds bind, is in an "open" conformation similar to that observed in drug-bound HRV14. Drug binding in HRV1A does not induce extensive conformational changes, in contrast to the case of HRV14.  相似文献   

2.
X-Ray diffraction data have been obtained for nine related antiviral agents ("WIN compounds") while bound to human rhinovirus 14 (HRV14). These compounds can inhibit both viral attachment to host cells and uncoating. To calculate interpretable electron density maps it was necessary to account for (1) the low (approximately 60%) occupancies of these compounds in the crystal, (2) the large (up to 7.9 A) conformational changes induced at the attachment site, and (3) the incomplete diffraction data. Application of a density difference map technique, which exploits the 20-fold noncrystallographic redundancy in HRV14, resulted in clear images of the HRV14:WIN complexes. A real-space refinement procedure was used to fit atomic models to these maps. The binding site of WIN compounds in HRV14 is a hydrophobic pocket composed mainly from residues that form the beta-barrel of VP1. Among rhinoviruses, the residues associated with the binding pocket are far more conserved than external residues and are mostly contained within regular secondary structural elements. Molecular dynamics simulations of three HRV14:WIN complexes suggest that portions of the WIN compounds and viral protein near the entrance of the binding pocket are more flexible than portions deeper within the beta-barrel.  相似文献   

3.
Hewat EA  Blaas D 《Journal of virology》2004,78(6):2935-2942
Release of the human rhinovirus (HRV) genome into the cytoplasm of the cell involves a concerted structural modification of the viral capsid. The intracellular adhesion molecule 1 (ICAM-1) cellular receptor of the major-group HRVs and the low-density lipoprotein (LDL) receptor of the minor-group HRVs have different nonoverlapping binding sites. While ICAM-1 binding catalyzes uncoating, LDL receptor binding does not. Uncoating of minor-group HRVs is initiated by the low pH of late endosomes. We have studied the conformational changes concomitant with uncoating in the major-group HRV14 and compared them with previous results for the minor-group HRV2. The structure of empty HRV14 was determined by cryoelectron microscopy, and the atomic structure of native HRV14 was used to examine the conformational changes of the capsid and its constituent viral proteins. For both HRV2 and HRV14, the transformation from full to empty capsid involves an overall 4% expansion and an iris type of movement of viral protein VP1 to open up a 10-A-diameter channel on the fivefold axis to allow exit of the RNA genome. The beta-cylinders formed by the N termini of the VP3 molecules inside the capsid on the fivefold axis all open up in HRV2, but we propose that only one opens up in HRV14. The release of VP4 is less efficient in HRV14 than in HRV2, and the N termini of VP1 may exit at different points. The N-terminal loop of VP2 is modified in both viruses, probably to detach the RNA, but it bends only inwards in HRV2.  相似文献   

4.
Structure of human rhinovirus serotype 2 (HRV2)   总被引:7,自引:0,他引:7  
Human rhinoviruses are classified into a major and a minor group based on their binding to ICAM-1 or to members of the LDL-receptor family, respectively. They can also be divided into groups A and B, according to their sensitivity towards a panel of antiviral compounds. The structure of human rhinovirus 2 (HRV2), which uses the LDL receptor for cell attachment and is included in antiviral group B, has been solved and refined at 2.6 A resolution by X-ray crystallography to gain information on the peculiarities of rhinoviruses, in particular from the minor receptor group. The main structural differences between HRV2 and other rhinoviruses, including the minor receptor group serotype HRV1A, are located at the internal protein shell surface and at the external antigenic sites. In the interior, the N termini of VP1 and VP4 form a three-stranded beta-sheet in an arrangement similar to that present in poliovirus, although myristate was not visible at the amino terminus of VP4 in the HRV2 structure. The betaE-betaF loop of VP2, a linear epitope within antigenic site B recognized by monoclonal antibody 8F5, adopts a conformation considerably different from that found in the complex of 8F5 with a synthetic peptide of the same sequence. This either points to considerable structural changes impinged on this loop upon antibody binding, or to the existence of more than one single conformation of the loop when the virus is in solution. The hydrophobic pocket of VP1 was found to be occupied by a pocket factor apparently identical with that present in the major receptor group virus HRV16. Electron density, consistent with the presence of a viral RNA fragment, is seen stacked against a conserved tryptophan residue.  相似文献   

5.
Pleconaril is a broad-spectrum antirhinovirus and antienterovirus compound that binds into a hydrophobic pocket within viral protein 1, stabilizing the capsid and resulting in the inhibition of cell attachment and RNA uncoating. When crystals of human rhinovirus 16 (HRV16) and HRV14 are incubated with pleconaril, drug occupancy in the binding pocket is lower than when pleconaril is introduced during assembly prior to crystallization. This effect is far more marked in HRV16 than in HRV14 and is more marked with pleconaril than with other compounds. These observations are consistent with virus yield inhibition studies and radiolabeled drug binding studies showing that the antiviral effect of pleconaril against HRV16 is greater on the infectivity of progeny virions than the parent input viruses. These data suggest that drug integration into the binding pocket during assembly, or at some other late stage in virus replication, may contribute to the antiviral activity of capsid binding compounds.  相似文献   

6.
Intercellular adhesion molecule 1 (ICAM-1) is the cellular receptor for the major group of human rhinovirus serotypes, including human rhinovirus 14 (HRV14) and HRV16. A naturally occurring variant of ICAM-1, ICAM-1Kilifi, has altered binding characteristics with respect to different HRV serotypes. HRV14 binds to ICAM-1 only transiently at physiological temperatures but forms a stable complex with ICAM-1Kilifi. Conversely, HRV16 forms a stable complex with ICAM-1 but does not bind to ICAM-1Kilifi. The three-dimensional structures of HRV14 and HRV16, complexed with ICAM-1, and the structure of HRV14, complexed with ICAM-1Kilifi, have been determined by cryoelectron microscopy (cryoEM) image reconstruction to a resolution of approximately 10 angstroms. Structures determined by X-ray crystallography of both viruses and of ICAM-1 were fitted into the cryoEM density maps. The interfaces between the viruses and receptors contain extensive ionic networks. However, the interactions between the viruses and ICAM-1Kilifi contain one less salt bridge than between the viruses and ICAM-1. As HRV16 has fewer overall interactions with ICAM-1 than HRV14, the absence of this charge interaction has a greater impact on the binding of ICAM-1Kilifi to HRV16 than to HRV14.  相似文献   

7.
A model has been built of the amino-terminal domain of the intercellular adhesion molecule-1 (ICAM-1), the receptor for most human rhinovirus serotypes. The model was based on sequence and presumed structural homology to immunoglobulin constant domains. It fits well into the putative receptor attachment site, the canyon, on the human rhinovirus-14 (HRV14) surface in a manner consistent with most of the mutational data for ICAM-1 (Staunton, D. E., Dustin, M. L., Erickson, H. P., Springer, T. A. Cell, in press, 1989) and HRV14 (Colonno, R. J., Condra, J. H., Mizutani, S., Callahan, P. L., Davies, M. E., Murcko, M. A. Proc. Natl. Acad. Sci. U.S.A. 85: 5449-5453, 1988).  相似文献   

8.
Competitive viral binding assays have revealed previously that coxsackievirus A21 (CAV21) and human rhinovirus 14 (HRV14) share a common cell surface receptor. More recently, intercellular adhesion molecule-1 (ICAM-1) has been identified as the cellular receptor for HRV-14. Also, anti-ICAM-1 monoclonal antibodies (MAbs) blocked infection by HRV14, CAV13, CAV18, and CAV21, suggesting that these viruses share this receptor; however, this has never been established by more direct methods. In this study we show conclusively that CAV21 binds to ICAM-1 and that MAbs directed against the N-terminal domain of the molecule inhibit this attachment. Furthermore, we show that the specific interaction between ICAM-1 and 160S CAV21 virions induces formation of 135S A particles. Finally, we show transfection of normally nonsusceptible mouse L cells with human ICAM-1 cDNA renders them susceptible to infection by CAV21.  相似文献   

9.
Human rhinovirus 14 complexed with antiviral compound R 61837.   总被引:7,自引:0,他引:7  
The binding of the antirhinoviral agent R 61837 to human rhinovirus 14 has been examined by X-ray crystallographic methods. The compound R 61837 binds in the same pocket (underneath the canyon floor) as the "WIN" antirhinoviral agents. It does not penetrate as far into the pocket but causes similar conformational changes in the virus capsid. The movement of residues 1217 to 1221 of viral protein 1 (in the "FMDV loop") is more pronounced for R 61837 than for WIN compounds. Although both R 61837 and WIN antiviral agents partially fill the same hydrophobic pocket, atomic binding interactions differ, showing that considerable diversity in the nature of antiviral agents is possible.  相似文献   

10.
An attempt has been made to build a model of human rhinovirus 2 (HRV2) based on the known human rhinovirus 14 (HRV14) structure. HRV2 was selected because its amino acid sequence is known and because it belongs to the minor rhinovirus receptor class as compared to HRV14, which belongs to the major class. Initial alignment of HRV2 with HRV14 based on the primary sequence and the knowledge of the three-dimensional structure of HRV14 showed that the most probable position of the majority of insertions and deletions occurred in the vicinity of the neutralizing immunogenic sites (NIm). Out of a total of 855 amino acids present in one copy of each of the capsid proteins VP1 through VP4 of HRV14, 411 are different between the two viruses. There are also 6 amino acid residues inserted and 14 residues deleted in HRV2 relative to HRV14. Examination of amino acid interactions showed several cases of conservation of function, e.g., salt bridges or the filling of restricted space. The largest variation amongst the residues lining the canyon, the putative receptor binding site, was in the carboxy-terminal residues of VP1.  相似文献   

11.
A recently recognized human rhinovirus species C (HRV-C) is associated with up to half of HRV infections in young children. Here we propagated two HRV-C isolates ex vivo in organ culture of nasal epithelial cells, sequenced a new C15 isolate and developed the first, to our knowledge, reverse genetics system for HRV-C. Using contact points for the known HRV receptors, intercellular adhesion molecule-1 (ICAM-1) and low-density lipoprotein receptor (LDLR), inter- and intraspecies footprint analyses predicted a unique cell attachment site for HRV-Cs. Antibodies directed to binding sites for HRV-A and -B failed to inhibit HRV-C attachment, consistent with the alternative receptor footprint. HRV-A and HRV-B infected HeLa and WisL cells but HRV-C did not. However, HRV-C RNA synthesized in vitro and transfected into both cell types resulted in cytopathic effect and recovery of functional virus, indicating that the viral attachment mechanism is a primary distinguishing feature of HRV-C.  相似文献   

12.
Human rhinovirus 14 (HRV14) is a member of the rhinovirus genus, which belongs to the picornavirus family, which includes clinically and economically important members, such as poliovirus, foot-and-mouth disease virus, and endomyocarditis virus. Capsid stability plays an important role in the viral infection process, in that it needs to be stable enough to move from cell to cell and yet be able to release its genetic material upon the appropriate environmental cues from the host cell. It has been suggested that certain host cell molecules, "pocket factors," bind to the WIN drug-binding cavity beneath the canyon floor and provide transient stability to a number of the picornaviruses. To directly test this hypothesis, HRV14 was mutated in (V1188M, C1199W, and V1188M/C1199W) and around (S1223G) the drug-binding pocket. Infectivity, limited proteolysis, and matrix-assisted laser desorption ionization analyses indicate that filling the drug-binding pocket with bulky side chains is not deleterious to the viral life cycle and lends some stabilization to the capsid. In contrast, studies with the S1223G mutant suggest that this mutation at least partially overcomes WIN drug-mediated inhibition of cell attachment and capsid breathing. Finally, HRV16, which is inherently more stable than HRV14 in a number of respects, was found to "breathe" only at 37 degrees C and did not tolerate stabilizing mutations in the drug-binding cavity. These results suggest that it is the drug-binding cavity itself and not the putative pocket factor that is crucial for the capsid dynamics, which is, in turn, necessary for infection.  相似文献   

13.
The three-dimensional structure of human rhinovirus 14 has a deep surface depression or "canyon" encircling each of the twelve 5-fold vertices. The canyon's surface is inaccessible to the broad antigen binding region of antibodies, permitting conservation of residues that might be required for host cell receptor recognition without danger of attack by the host's immune system. In contrast, the exposed surface features, where neutralizing antibodies are known to bind, change rapidly under pressure from the host's immune system. It was, therefore, hypothesized that this depression was the site of receptor attachment. Similar, but smaller, depressions had been observed previously on both the hemagglutinin and neuraminidase spikes of influenza virus. These have also been shown to be the site of host cell interaction. Although support for the canyon hypothesis was only circumstantial in the first place, there are now extensive confirmatory data. These include site-specific mutations of residues in the canyon and conformational changes induced in the canyon by the binding of small organic molecules, all of which alter receptor attachment. The strategy used in human rhinovirus 14 to protect the viral receptor attachment site from immune surveillance may be utilized not only in other picornaviruses but also in many other types of viruses including human immunodeficiency virus.  相似文献   

14.
Intercellular adhesion molecule 1 (ICAM-1) functions as the cellular receptor for the major group of human rhinoviruses, being not only the target of viral attachment but also the mediator of viral uncoating. The configurations of HRV3-ICAM-1 complexes prepared both at 4 degrees C and physiological temperature (37 degrees C) were analyzed by cryoelectron microscopy and image reconstruction. The particle diameters of two complexes (with and without RNA) representing uncoating intermediates generated at 37 degrees C were each 4% larger than that of those prepared at 4 degrees C. The larger virus particle arose by an expansive movement of the capsid pentamers along the fivefold axis, which loosens interprotomer contacts, particularly at the canyon region where the ICAM-1 receptor bound. Particle expansion required receptor binding and preceded the egress of the viral RNA. These observations suggest that receptor-mediated uncoating could be a consequence of restrained capsid motion, where the bound receptors maintain the viral capsid in an expanded open state for subsequent genome release.  相似文献   

15.
Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process.  相似文献   

16.
Viral receptors serve both to target viruses to specific cell types and to actively promote the entry of bound virus into cells. Human rhinoviruses (HRVs) can form complexes in vitro with a truncated soluble form of the HRV cell surface receptor, ICAM-1. These complexes appear to be stoichiometric, with approximately 60 ICAM molecules bound per virion or 1 ICAM-1 molecule per icosahedral face of the capsid. The complex can have two fates, either dissociating to yield free virus and free ICAM-1 or uncoating to break down to an 80S empty capsid which has released VP4, viral RNA, and ICAM-1. This uncoating in vitro mimics the uncoating of virus during infection of cells. The stability of the virus-receptor complex is dependent on temperature and the rhinovirus serotype. HRV serotype 14 (HRV14)-ICAM-1 complexes rapidly uncoat, HRV16 forms a stable virus-ICAM complex which does not uncoat detectably at 34 degrees C, and HRV3 has an intermediate phenotype. Rhinovirus can also uncoat after exposure to mildly acidic pH. The sensitivities of individual rhinovirus serotypes to ICAM-1-mediated virus uncoating do not correlate with uncoating promoted by incubation at low pH, suggesting that these two means of virus destabilization occur by different mechanisms. Soluble ICAM-1 and low pH do not act synergistically to promote uncoating. The rate of uncoating does appear to be inversely related to virus affinity for its receptor.  相似文献   

17.
Unlike the well-established picture for the entry of enveloped viruses, the mechanism of cellular entry of non-enveloped eukaryotic viruses remains largely mysterious. Picornaviruses are representative models for such viruses, and initiate this entry process by their functional receptors. Here we present the structural and functional studies of SCARB2, a functional receptor of the important human enterovirus 71 (EV71). SCARB2 is responsible for attachment as well as uncoating of EV71. Differences in the structures of SCARB2 under neutral and acidic conditions reveal that SCARB2 undergoes a pivotal pH-dependent conformational change which opens a lipid-transfer tunnel to mediate the expulsion of a hydrophobic pocket factor from the virion, a pre-requisite for uncoating. We have also identified the key residues essential for attachment to SCARB2, identifying the canyon region of EV71 as mediating the receptor interaction. Together these results provide a clear understanding of cellular attachment and initiation of uncoating for enteroviruses  相似文献   

18.
Spontaneous mutants of human rhinovirus 14 resistant to WIN 52084, an antiviral compound that inhibits attachment to cells, were isolated by selecting plaques that developed when wild-type virus was plated in the presence of high (2 micrograms/ml) or low (0.1 to 0.4 micrograms/ml) concentrations of the compound. Two classes of drug resistance were observed: a high-resistance (HR) class with a frequency of about 4 x 10(-5), and a low-resistance (LR) class with a 10- to 30-fold-higher frequency. The RNA genomes of 56 HR mutants and 13 LR mutants were sequenced in regions encoding the drug-binding site. The HR mutations mapped to only 2 of the 16 amino acid residues that form the walls of the drug-binding pocket. The side chains of these two residues point directly into the pocket and were invariably replaced by bulkier groups. These findings, and patterns of resistance to related WIN compounds, support the concept that HR mutations may hinder the entry or seating of drug within the binding pocket. In contrast, all of the LR mutations mapped to portions of the polypeptide chain near the canyon floor that move when the drug is inserted. Because several LR mutations partially reverse the attachment-inhibiting effect of WIN compounds, these mutants provide useful tools for studying the regions of the capsid structure involved in attachment. This paper shows that the method of escape mutant analysis, previously used to identify antibody binding sites on human rhinovirus 14, is also applicable to analysis of antiviral drug activity.  相似文献   

19.
Human rhinovirus 14 has a pseudo T = 3 icosahedral structure in which 60 copies of the three larger capsid proteins VP1, VP2 and VP3 are arranged in an icosahedral surface lattice, reminiscent of T = 3 viruses such as tomato bushy stunt virus and southern bean mosaic virus. The overall secondary and tertiary structures of VP1, VP2 and VP3 are very similar. The structure of human rhinovirus 14, which was refined at a resolution of 3.0 A [R = 0.16 for reflections with F greater than 3 sigma(F)], is here analyzed in detail. Quantitative analysis of the surface areas of contact (proportional to hydrophobic free energy of association) supports the previously assigned arrangement within the promoter, in which interactions between VP1 and VP3 predominate. Major contacts among VP1, VP2 and VP3 are between the beta-barrel moieties. VP4 is associated with the capsid interior by a distributed network of contacts with VP1, VP2 and VP3 within a promoter. As the virion assembly proceeds, the solvent-accessible surface area becomes increasingly hydrophilic in character. A mixed parallel and antiparallel seven-stranded sheet is composed of the beta C, beta H, beta E and beta F strands of VP3 in one pentamer and beta A1 and beta A2 of VP2 and the VP1 amino terminus in another pentamer. This association plays an essential role in holding pentamers together in the mature virion as this contact region includes more than half of the total short non-bonded contacts between pentamers. Contacts between protomers within pentamers are more extensive than the contacts between pentamers, accounting in part for the stability of pentamers. The previously identified immunogenic regions are correlated with high solvent accessibility, accessibility to large probes and also high thermal parameters. Surface residues in the canyon, the putative cellular receptor recognition site, have lower thermal parameters than other portions of the human rhinovirus 14 surface. Many of the water molecules in the ordered solvent model are located at subunit interfaces. A number of unusual crevices exist in the protein shell of human rhinovirus 14, including the hydrophobic pocket in VP1 which is the locus of binding for the WIN antiviral agents. These may be required for conformational flexibility during assembly and disassembly. The structures of the beta-barrels of human rhinovirus 14 VP1, VP2 and VP3 are compared with each other and with the southern bean mosaic virus coat protein.  相似文献   

20.
The intercellular adhesion molecule 1 (ICAM-1) is used as a cellular receptor by 90% of human rhinoviruses (HRVs). Chimeric immunoadhesin molecules containing extracellular domains of ICAM-1 and constant regions of immunoglobulins (Igs) were designed in order to determine the effect of increased valency, Ig isotype, and number of ICAM-1 domains on neutralization and disruption of rhinovirus structure. These immunoadhesins include ICAM-1 amino-terminal domains 1 and 2 fused to the hinge and constant domains of the heavy chains of IgA1, IgM, and IgG1 (IC1-2D/IgA, -/IgM, and -/IgG). In addition, all five extracellular domains were fused to IgA1 (IC1-5D/IgA). Immunoadhesins were compared with soluble forms of ICAM-1 containing five and two domains (sICAM-1 and ICI-2D, respectively) in assays of HRV binding, infectivity, and conformation. In prevention of HRV plaque formation, IC1-5D/IgA was 200 times and IC1-2D/IgM and IC1-2D/IgA were 25 and 10 times more effective, respectively, than ICAM-1. The same chimeras were highly effective in inhibiting binding of rhinovirus to cells and disrupting the conformation of the virus capsid, as demonstrated by generation of approximately 65S particles. The results show that the number of ICAM-1 domains and a flexible Ig hinge are important factors contributing to the efficacy of neutralization. The higher efficiency of chimeras that bound bivalently in disrupting HRV was attributed to higher binding avidity. The IC1-5D/IgA immunoadhesin was effective at nanomolar concentrations, making it feasible therapy for rhinovirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号