首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of 13-C nuclear magnetic resonance to the analysis of some sialic acid-containing meningococcal polysaccharide antigens is described. Complete assignments of the spectra of both the native serogroup B and the de-O-acetylated serogroup C polysaccharides have been made. These assignments were based on the corresponding data for some related monomers (sialic acid and its alpha-and beta-methylglycosides) and on supportive chemical evidence. The data indicate that the serogroup B polysaccharide is a 2 yields 8-alpha-linked homopolymer of sialic acid, identical in structure with colominic acid from Escherichia coli, whereas the de-O-acetylated serogroup C polysaccharide is a 2 yield 9-alpha-linked homopolymer. The native serogroup C polysaccharide is O-acetylated (1.16 mol of O-acetyl per sialic acid residue), all the O-acetyl substituents being located only at C-7 and C-8 of the sialic acid residues, and in addition contains unacetylated residues (24%). The polysaccharide contains di-O-acetylated residues (O-acetyl on C-7 and C-8), and at least one of the possible monoacetylated residues at C-7 or C-8.  相似文献   

2.
Virulence of Vibrio vulnificus has been strongly associated with encapsulation and an opaque colony morphology. Capsular polysaccharide was purified from a whole-cell, phosphate-buffered saline-extracted preparation of the opaque, virulent phase of V. vulnificus M06-24 (M06-24/O) by dialysis, centrifugation, enzymatic digestion, and phenol-chloroform extraction. Nuclear magnetic resonance spectroscopic analysis of the purified polysaccharide showed that the polymer was composed of a repeating structure with four sugar residues per repeating subunit: three residues of 2-acetamido-2,6-dideoxyhexopyranose in the alpha-gluco configuration (QuiNAc) and an additional residue of 2-acetamido hexouronate in the alpha-galactopyranose configuration (GalNAcA). The complete carbohydrate structure of the polysaccharide was determined by heteronuclear nuclear magnetic resonance spectroscopy and by high-performance anion-exchange chromatography. The 1H and 13C nuclear magnetic resonance spectra were completely assigned, and vicinal coupling relationships were used to establish the stereochemistry of each sugar residue, its anomeric configuration, and the positions of the glycosidic linkages. The complete structure is: [----3) QuipNAc alpha-(1----3)-GalpNAcA alpha-(1----3)-QuipNAc alpha-(1----]n QuipNAc alpha-(1----4)-increases The polysaccharide was produced by a translucent phase variant of M06-24 (M06-24/T) but not by a translucent, acapsular transposon mutant (CVD752). Antibodies to the polysaccharide were demonstrable in serum from rabbits inoculated with M06-24/O.  相似文献   

3.
3-deoxy-D-manno acid (KDO) has been characterised as the major component (53%) of the capsular polysaccharide antigen of N. meningitidis serogroup 29-e. This is the first reported occurrence of KDO in any biological polymer other than its well established occurrence in the lipopolysaccharides of gram-negative bacteria.  相似文献   

4.
[99%, 1-13C]- and [90%, 2-13C]3-deoxy-D-manno-octulosonic acid (KDO) were prepared enzymatically and used to determine the anomeric specificity of the CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyl transferase (CMP-KDO synthetase) by 13C NMR spectroscopy. Addition of CMP-KDO synthetase to reaction mixtures containing either 1-13C- or 2-13C-labeled KDO resulted in rapid CMP-KDO formation which was accompanied by a substantial decrease in the 13C-enriched resonances of the beta-pyranose form of KDO relative to the resonances of other KDO species in solution, demonstrating that the beta-pyranose is the preferred substrate. Concomitant with the production of CMP-KDO was the appearance of peaks at 174.3 and 101.4 ppm when [1-13C]- and [2-13C]KDO, respectively, were used as substrates. The correspondence of these resonances to the enriched carbons in CMP-KDO was confirmed by the expected 3-bond (3JP,C-1 = 6.9 Hz) and 2-bond coupling (2JP,C-2 = 8.3 Hz) between the labeled carbons and the ketosidically linked phosphoryl group. A large coupling (3J = 5.7 Hz) was observed in proton-coupled spectra of CMP-[1-13C]KDO between carbon 1 and the axial proton at carbon 3 of KDO. The magnitude of this coupling constant supports a diaxial relationship between these two groups and, along with chemical shift data, indicates that KDO retains the beta-configuration when linked in CMP-KDO.  相似文献   

5.
A liquid chromatography (1.6 MPa) system for the analysis of 3-deoxy-D-manno-2-octulosonic acid (KDO), N-acetylneuraminic acid (Neu5Ac), methyl alpha- and beta-glycosides of Neu5Ac and KDO, alpha-heptosyl-(1----5)-KDO, various sialyllactoses, alpha-KDO-(2----4)-KDO, alpha-KDO-(2----4)-KDO methyl alpha-glycoside, beta-KDO-(2----4)-KDO methyl beta-glycoside, D-glucuronic acid, D-glucurono-3,6-lactone, and D-galacturonic acid has been developed. Separation was achieved within 10 and 30 min by the use of a small column filled with a strongly basic, anion-exchange resin, Aminex A-29, and 0.75 or 10mM sodium sulfate solutions as mobile phases. This method allowed the determination of KDO and sialic acids in amounts of 100 ng (0.5 nmol) and 200 pg (0.6 pmol), respectively.  相似文献   

6.
The major oligosaccharide from the core region of the lipopolysaccharide from R. trifolii ANU843 was isolated and its structure determined. It is a trisaccharide consisting of two galacturonic acid residues and one 3-deoxy-D-manno-2-octulosonic acid (KDO) residue. The two galacturonic acid residues are terminally linked alpha to the C-4 and C-7 atoms of KDO. This structure was determined through use of 1H- and 13C-n.m.r. spectroscopy, f.a.b.-m.s., and g.l.c.-m.s. techniques. This oligosaccharide had not previously been reported to be present in the lipopolysaccharides from Gram-negative bacteria.  相似文献   

7.
The capsular polysaccharide antigen of Neisseria meningitidis group I was isolated by Cetavlon precipitation and purified by ion-exchange chromatography. The structure of the I polysaccharide was determined largely by comprehensive proton and carbon-13 nuclear magnetic resonance studies in which both one-dimensional and two-dimensional experiments were carried out directly on the I polysaccharide. The I polysaccharide is composed of the repeating unit----4)alpha-L-GulpNAcA(1----3)[4-OAc]beta-D-ManpNA-cA(-- --in which the former residue adopts the 4C1 (L) conformation and the latter residue adopts the 4C1 (D) conformation. The one-bond coupling between the anomeric carbon and proton (1J13C,H) of the 2-acetamido-2-deoxy-beta-D-mannuronopyranosyl residue is not consistent with its beta-D configuration. This anomalous value of 1J13C,H for this residue is due to through-space anisotropy effects on its anomeric proton, generated by the proximity of the carboxyl group of the neighboring 2-acetamido-2-deoxy-alpha-L-guluronopyranosyl residue. The O-acetyl substituents of the I polysaccharide are essential for its antigenicity to group I polysaccharide-specific antibodies.  相似文献   

8.
The O-antigenic polysaccharide of the Rhizobium etli CE3 lipopolysaccharide (LPS) was structurally characterized using chemical degradations (Smith degradation and beta-elimination of uronosyl residues) in combination with alkylation analysis, electrospray, and matrix-assisted laser desorption ionization-time of flight mass spectrometry, tandem mass spectrometry, and (1)H COSY and TOCSY nuclear magnetic resonance spectroscopy analyses of the native polysaccharide and the derived oligosaccharides. The polysaccharide was found to be a unique, relatively low molecular weight glycan having a fairly discrete size, with surprisingly little variation in the number of repeating units (degree of polymerization = 5). The polysaccharide is O-acetylated and contains a variety of O-methylated glycosyl residues, rendering the native glycan somewhat hydrophobic. The molecular mass of the major de-O-acetylated species, including the reducing end 3-deoxy-d-manno-2-octulosonic acid (Kdo) residue, is 3330 Da. The polysaccharide is comprised of a trisaccharide repeating unit having the structure -->4)-alpha-d-GlcpA-(1-->4)-[alpha-3-O-Me-6-deoxy-Talp-(1--> 3)]-alpha -l-Fucp-(1-->. The nonreducing end of the glycan is terminated with the capping sequence alpha-2,3, 4-tri-O-Me-Fucp-(1-->4)-alpha-d-GlcpA-(1-->, and the reducing end of the molecule consists of the non-repeating sequence -->3)-alpha-l-Fucp-(1-->3)-beta-d-Manp-(1-->3)-beta-QuiNA cp-(1-->4)-a lpha-Kdop-(2-->, where QuiNAc is N-acetylquinovosamine (2-N-acetamido-2,6-dideoxyglucose). The reducing end Kdo residue links the O-chain polysaccharide to the core region oligosaccharide, resulting in a unique location for a Kdo residue in LPS, removed four residues distally from the lipid A moiety. Structural heterogeneity in the O-chain arises mainly from the O-acetyl and O-methyl substitution. Methylation analysis using trideuteriomethyl iodide indicates that a portion of the 2,3,4-tri-O-methylfucosyl capping residues, typically 15%, are replaced with 2-O-methyl- and/or 2,3-di-O-methylfucosyl residues. In addition, approximately 25% of the 3,4-linked branching fucosyl residues and 10% of the 3-linked fucosyl residues are 2-O-methylated. A majority of the glucuronosyl residues are methyl-esterified at C-6. These unique structural features may be significant in the infection process.  相似文献   

9.
Duan J  Zheng Y  Dong Q  Fang J 《Phytochemistry》2004,65(5):609-615
A pectic polysaccharide DL-2A with a molar mass of 8.5 x 10(5), was obtained from the boiling water extract of Diospyros kaki leaves. It had [alpha]20D -21.8 degrees (c 0.22, H2O) and consisted of rhamnose, arabinose, galactose, xylose and galacturonic acid units in the molar ratio of 0.4:3.4:2.4:1.0:0.8, along with traces of glucuronic acid. About 16.7% of galacturonic acid existed as the methyl ester. A combination of linkage analyses, periodate oxidation, partial acid hydrolysis, selective lithium-degraded reaction, ESIMS, 1H- and 13C- NMR spectral analyses revealed its structural features. It was found that DL-2A possessed an alpha-(1-->4)-galacturonan backbone with some insertions of alpha-1,2-Rhap residues. The side-chains of arabino-3,6-galactan were attached to the backbone via O-4 of Rhap residues and O-3 of GalAp residues, while 4-linked xylose residues (forming short linear chains) were directly linked to O-4 of rhamnose residues, not as part of the xylogalacturonan. These novel structural features enlarge the knowledge on the fine structure of pectic substances in the plant kingdom.  相似文献   

10.
Abstract The chemical structure of the lipid A moiety of the lipopolysaccharide of the type strain of Plesiomonas shigelloides was elucidated. It consists of a β-(1 → 6)-linked glucosamine disaccharide carrying phosphate groups at C-1 of the reducing and at C-4' of the non-reducing glucosamine. It contains a total of 6 residues of fatty acids, 2 amide-linked and 4 ester-linked. The amino groups of the backbone disaccharide are N -acylated by substituted 3-hydroxyacyl residues: at the reducing glucosamine by 3-O-(14:0)14:0; and at the non-reducing glucosamine by 3-O-(12:0)14:0.
Two residues of 3-hydroxytetradecanoic acid are linked to C-3 and C-3' of the glucosamine residues; the hydroxy groups of these ester-linked 3-hydroxytetradecanoic acids are unsubstituted. In free lipid A, the hydroxyl groups at C-4 and C-6' are unsubstituted, indicating that the 2-keto-3-deoxyoctonic acid (KDO) is linked to C-6' of the non-reducing glucosamine, as was shown with enterobacterial lipid A. The taxonomical significance of these structural details is discussed.  相似文献   

11.
[18O]3-Deoxy-D-manno-octulosonate (KDO), labeled at the anomeric oxygen, was prepared by exchange with [18O]H2O and used to follow the route of oxygen transfer during cytidine 5'-monophosphate-3-deoxy-D-manno-octulosonate (CMP-KDO) formation catalyzed by 3-deoxy-D-manno-octulosonate cytidylyl-transferase (CMP-KDO synthetase). The 31P-NMR signal of the phosphoryl group of CMP-KDO (-5.85 ppm), which appeared as a single resonance when CMP-KDO formation took place with unenriched KDO, appeared as two peaks when CMP-KDO formation took place in the presence of a mixture of [16O]-and [18O]KDO. These results demonstrate the retention of 18O during CMP-KDO formation. Confirmation that the labeled oxygen in CMP-KDO was retained in the "bridge" position between CMP and KDO came from 13C-NMR studies of CMP-KDO formed in the presence of 90% [2-13C, 18O] KDO. The prominent C-2 KDO resonance in CMP-KDO, which is normally a doublet at 101.4 ppm (Kohlbrenner, W.E., and Fesik, S.W. (1985) J. Biol. Chem. 260, 14695-14700), appeared as four peaks when a mixture of [2-13C,16O]- and [2-13C, 18O]KDO was used, confirming the direct bonding of 18O to the C-2 of KDO in CMP-KDO. These results are consistent with a nucleophilic displacement mechanism for CMP-KDO formation.  相似文献   

12.
Oligosaccharides released from the lipooligosaccharides (LOS) of Haemophilus influenzae nontypable strain 2019 by mild acid hydrolysis were fractionated by size exclusion chromatography and analyzed by liquid secondary ion mass spectrometry. The major component of the heterogeneous mixture was found to be a hexasaccharide of Mr 1366, which lost two phosphoethanolamine groups upon treatment with 48% aqueous HF. The dephosphorylated hexasaccharide was purified and shown by tandem mass spectrometry, composition analysis, methylation analysis, and two-dimensional nuclear magnetic resonance studies to be Gal beta 1----4Glc beta 1----(Hep alpha 1----2Hep alpha 1----3) 4Hep alpha 1----5anhydro-KDO, where Hep is L-glycero-D-manno-heptose and KDO is 3-deoxy-D-manno-octulosonic acid. An analogous structure containing authentic KDO was generated from LOS that had been HF-treated prior to acetic acid hydrolysis, suggesting that the reducing terminal anhydro-KDO moiety is produced as an artifact of the hydrolysis procedure by beta-elimination of a phosphate substituent from C-4 of KDO. Mass spectral analyses of O-deacylated LOS and free lipid A confirmed that, in addition to the two phosphoethanolamines on the oligosaccharide and two phosphates on the lipid A, another phosphate group exists on the KDO. This KDO does not appear to be further substituted with additional KDO residues in intact H. influenzae 2019 LOS. The terminal disaccharide epitope, Gal beta 1----4Glc beta 1----, of the hexasaccharide is also present on lactosylceramide, a precursor to human blood group antigens. It is postulated that the presence of this structure on H. influenzae LOS may represent a form of host mimicry by the pathogen.  相似文献   

13.
The O-specific polysaccharide, obtained on mild acid degradation of lipopolysaccharide of Pseudomonas aeruginosa O13 (Lányi classification), is built up of trisaccharide repeating units involving 2-acetamidino-2,6-dideoxy-D-glucose (N-acetyl-D-quinovosamine, D-QuiNAc), 2-acetamidino-2,6-dideoxy-L-galactose (L-fucosacetamidine, L-FucAm), and a new sialic-acid-like sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-L-galacto-nonuloso n ic acid (Sug), and thus contains simultaneously both acidic and basic functions. Cleavage of the polysaccharide with hydrogen fluoride in methanol revealed the high stability of the glycosidic linkage of the ulosonic acid and afforded methyl glycosides of a disaccharide and a trisaccharide. The structures of the new ulosonic acid and acetamidino group were established by analysing the oligosaccharide fragments by 1H, 13C nuclear magnetic resonance spectrometry, as well as on the basis of their chemical conversions: alkaline hydrolysis of the acetamidino group into acetamido group, reductive deamination with lithium borohydride into the ethylamino group and acetylation with acetic anhydride in pyridine accompanied by intramolecular acylation of the acetamidino function by the ulosonic acid to form a six-membered lactam ring. Identification of the oligosaccharide fragments and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and polysaccharide revealed the following structure of the repeating unit: ----3)D-QuiNAcp(alpha 1----3)Sugp(alpha 2----3)L-FucAmp(alpha 1----.  相似文献   

14.
The capsular polysaccharide of Actinobacillus pleuropneumoniae serotype 5b (strain L20) was found to be a high molecular mass polymer composed of 2-acetamido-2-deoxy-D-glucose, D-glucose, and 3-deoxy-D-manno-octulosonic acid (KDO). Methylation analysis, partial hydrolysis and a combination of homonuclear and 1H-detected heteronuclear shift-correlated nuclear magnetic resonance experiments showed the polysaccharide to be a branched polymer of a trisaccharide repeating unit, having the structure: [formula; see text]  相似文献   

15.
The chemical synthesis, nuclear magnetic resonance, and mass spectrometric characteristics of the first C-4 hydroxylated bile acid analogues are described. The data definitively confirm, for the first time, the identity of 3 alpha,4 beta,7 alpha-trihydroxy-5 beta-cholanoic acid in human fetal gallbladder bile. In addition, 3 alpha,4 beta,7 alpha-12 alpha-tetrahydroxy-5 beta-cholanoic was identified in the feces from healthy newborn infants many days after birth, indicating a hepatic origin for C-4 hydroxylation of bile acids. To our knowledge bile acids hydroxylated at the C-4 position of the steroid nucleus have never been previously recognized in any mammalian species. The finding of this novel bile acid which accounts for 5-15% of the total biliary bile acids in early gestation indicates that C-4 hydroxylation is a unique and important metabolic pathway in early human development.  相似文献   

16.
The key step in the first chemical synthesis of anthrose (16) and its methyl alpha- (6) and beta-glycoside (22) was inversion of configuration at C-2 in triflates 10, 2, and 18, respectively, obtained from the common intermediate, methyl 4-azido-3-O-benzyl-4,6-dideoxy-alpha-D-mannopyranoside (1). To prepare methyl alpha-anthroside (6), methylation at O-2 of the gluco product 3, obtained from 2, was followed by hydrogenation/hydrogenolysis of the formed 2-methyl ether 4, to simultaneously remove the protecting benzyl group and reduce the azido function. Subsequent N-acylation of the formed amine 5 with 3-hydroxy-3-methylbutyric acid gave the target methyl alpha-glycoside 6. Synthesis of methyl beta-anthroside (22) comprised the same sequence of reactions, starting from the known methyl 4-azido-3-O-benzyl-4,6-dideoxy-beta-D-mannopyranoside (17), which was prepared from 1. In the synthesis of anthrose (16), 1-thio-beta-glucoside 11, obtained from 1 through 10, was methylated at O-2, and the azido function in the resulting benzylated 1-thioglycoside 12 was selectively reduced to give amine 13. After N-acylation with 3-hydroxy-3-methylbutyric acid, 1-thioglycoside 14 was hydrolyzed to give the corresponding reducing sugar, aldol 15, which was debenzylated to afford anthrose.  相似文献   

17.
Methyl 2,3-O-isopropylidene-alpha-D-mannofuranosidurononitrile [alternative name: methyl (5R)-5-C-cyano-2,3-O-isopropylidene-alpha-D-lyxofuranoside] (2), methyl 2,3-O-isopropylidene-alpha-D-mannofuranosiduronamide [methyl (5S)-5-C-carbamoyl-2,3-O-isopropylidene-alpha-D-lyxofuranoside; methyl (5S)-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosiduronamide] (3), methyl 2,3-O-isopropylidene-alpha-D-mannofuranosiduronic acid [methyl (5S)-2,3-O-isopropylidene-alpha-D-lyxo-hexofuranosiduronic acid] (4), methyl 5-deoxy-2,3-O-isopropylidene-5-ureido-beta-L-gulofuranosiduronamide [methyl (5R)-5-deoxy-2,3-O-isopropylidene-5-ureido-alpha-D-lyxo-hexofuranosiduronamide (5), and (4S,5S,6R)-5,6-dihydro-6-hydroxy-4,5-isopropylidenedioxy-4H-pyrido[2,1-e]imidazolidine-2',4'-dione [IUPAC name: (3aS,4R,8aS)-4-hydroxy-2,2-dimethyl-3a,8a-dihydro-4H-1,3-dioxa-4a,6-diaza-s-indacene-5,7-dione] (6), instead of the expected hydantoin derivative, were obtained from the Bucherer-Bergs reaction of methyl 2,3-O-isopropylidene-alpha-D-lyxo-pentodialdo-1,4-furanoside (1). The structure of 6 was deduced from NMR and mass spectral data and confirmed by X-ray crystallography. The configuration at C-5 in 2-5 was confirmed by establishing the 5S configuration of 3 by X-ray crystallography. Conformations of the six- and five-membered rings in 3 and 6 are also discussed.  相似文献   

18.
Mexiprostil is a new gastroprotective 16-methoxy-16-methyl-PGE1 methyl ester. To assign the absolute configuration at C-15, a crystalline high-melting C-1 ester analog 5 11,15-dihydroxy-16-methoxy-16-methyl-9-oxoprost-13-en-1-oic acid 4-(4-bromobenzamide)phenyl ester (15R, 16R) was prepared and submitted to single crystal X-ray analysis. Since C-8, C-11, C-12 and C-16 are shown to have R configurations, the X-ray diffraction results established that the configuration at C-15 is also R.  相似文献   

19.
New synthetic routes to three possible stereoisomers of hyodeoxycholic (3 alpha, 6 alpha-dihydroxy-5 beta-cholanic) acid are described. The principal reactions involved were inversion at C-3 of 3 alpha-hydroxy-6-oxo derivatives with diethyl azodicarboxylate-triphenylphosphine-formic acid and with N,N-dimethylformamide, without allomerization to the more stable 5 alpha form. On the basis of physical and chromatographic data, previously reported 3 beta, 6 alpha-dihydroxy-5 beta-cholanic acid and its methyl ester are shown to be C-3 epimeric mixtures. The 13C nuclear magnetic resonance spectra were of key importance in characterizing the stereoisomers and estimating their purity.  相似文献   

20.
We propose a (3, 2)D CT-HCCH-COSY experiment to rapidly collect the data and provide significant dispersion in the spectral region containing (13)C-(1)H cross peaks of CH(3) groups belonging to Ala, Ile, Leu, Met, Thr and Val residues. This enables one to carry out chemical shift based editing and grouping of all the (13)C-(1)H cross peaks of CH(3) groups belonging to Ala, Ile, Leu, Met, Thr and Val residues in fractionally (10%) (13)C-labelled proteins, which in turn aids in the sequence-specific resonance assignments in general and side-chain resonance assignments in particular, in any given protein. Further, we demonstrate the utility of this experiment for stereospecific assignments of the pro-R and pro-S methyl groups belonging to the Leu and Val residues in fractionally (10%) (13)C-labelled proteins. The proposed experiment opens up a wide range of applications in resonance assignment strategies and structure determination of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号