首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qualitative and quantitative comparisons of free and bound aminoacids and soluble proteins in white and green tissues of variegatedtobacco leaves were made. White tissue contained more free andless bound amino acids than green tissue, although the sum ofthe total amino acids did not differ significantly between thetwo tissues. The major free amino acids in white tissue wereglutamine and asparagine, whereas those in green tissue wereglutamic acid, aspartic acid and -aminobutyric acid. The contentsof fraction 1 protein and 70 S ribosomes in white tissue werenegligible in comparison with those found in green tissue, butthe amounts of other soluble protein components and the 80 Sribosomes were at the same level in both tissues. (Received October 21, 1981; Accepted January 28, 1982)  相似文献   

2.
Drought-stressed flatpea (Lathyrus sylvestris L.) plants from8 to 22 weeks old were analysed for nitrogen, soluble proteinand free amino acids. An increase in nitrogen and free aminoacid concentrations and a decrease in soluble protein levelwere observed in roots of plants up to 16 weeks old. The cumulativeconcentration of free amino acids increased with drought stress.Tissue concentrations of 2, 4-diaminobutyric acid (1.6–2.6%of the dry weight) were highest in leaves. Levels increasedsteadily, nearly doubling, in leaves and stems between weeks10 and 16. Levels in drought-stressed leaves were, on average,11.9% higher than those of controls. Estimated concentrationsof a mixture of 4-aminobutyric acid and an unknown amino acidwere highest in stems, increased in this tissue with age andtended to increase in stems and leaves and decrease in rootsin response to water deficit. Levels of the mixture of homoserineand another unidentified amino acid were not influenced by ageor water status of the plants. Root concentrations of asparagine,arginine, glutamine, aspartate, and another prominent, unidentifiedamino acid increased with plant age and reached a peak at thetime of flowering (14 to 18 weeks). Only the concentration ofthe unknown compound was elevated following drought stress.Concentrations of valine, isoleucine, leucine, phenylalanine,and methionine also increased during this period and were elevatedin drought-stressed plants. Proline levels increased with plantage and drought stress, but proline accounted for only about10% of the total free amino acids in the drought-stressed plants. Key words: 2, 4-Diaminobutyric acid, drought, flatpea  相似文献   

3.
The absorption of nitrate, protein metabolism and the source of nitrogen for proline synthesis were studied in soybean ( Glycine max L. cv. Akisengoku) with 15N tracer technique under water stress conditions. The absorption of nitrate was sensitive to water stress and the flow of nitrate into the leaves completely ceased under severe stress conditions. Net protein loss from the water-stressed leaves was attributable to both a decrease in synthetic activity and a stimulation of protein degradation. Proline and asparagine accumulated extensively in the severely water-stressed plant tissues, especially in the younger green leaves. Fifty four % of the loss of leaf protein-15N during the stress period was balanced by a gain in 15N in the free amino acids, 41% being found in proline and asparagine. The increase in 15N content of the free proline was 3 times greater than the decrease in 15N content of the protein-bound proline in the leaf. The results indicate that the accumulation of proline in response to water stress was caused by enhanced synthesis and that the nitrogen source for this proline is the leaf protein. The possible association of these findings with stress tolerance is discussed.  相似文献   

4.
Streptomyces griseus synthesizes proline for osmoregulation under salt stress. Uptake of exogenous [14C]proline and internal synthesis of proline were quantified in cells growing at salt concentrations from 0 to 1 M NaCl. Externally supplied proline accounted for an increased proportion of the intracellular pool of free proline as salt concentration was increased, but neither the concentration nor the composition of the internal amino acid pool was substantially altered by supply of exogenous proline. Uptake of exogenous proline significantly increased the specific growth yield of S. griseus growing under salt stress; the increased yield was proportional to reductions in proline synthesis.  相似文献   

5.
Streptomyces griseus synthesizes proline for osmoregulation under salt stress. Uptake of exogenous [14C]proline and internal synthesis of proline were quantified in cells growing at salt concentrations from 0 to 1 M NaCl. Externally supplied proline accounted for an increased proportion of the intracellular pool of free proline as salt concentration was increased, but neither the concentration nor the composition of the internal amino acid pool was substantially altered by supply of exogenous proline. Uptake of exogenous proline significantly increased the specific growth yield of S. griseus growing under salt stress; the increased yield was proportional to reductions in proline synthesis.  相似文献   

6.
Changes in the levels of protein and free amino acids in theseeds and placentae of Nicotiana tabacum were studied duringseed development. Seed maturation was completed 24 days afteranthesis. During maturation, protein rapidly accumulated inthe seeds between the 6th and 18th day, along with an appreciablecompositional change in the protein amino acids as the proportionsof glutamic acid and arginine increased. The amount of freeamino acids in the seeds gradually decreased throughout maturation.The major free amino acid on the 6th day after anthesis wasglutamine, which then drastically decreased between the 6thand 12th day with increases of glutamic acid, proline, arginineand alanine. The latter amino acids decreased thereafter untilthe 24th day. On the other hand, the amount and composition of the proteinsin the placentae did not change significantly throughout seedmaturation. In the early stage of development, the major freeamino acids in the placentae were glutamine, asparagine andglutamic acid, while in the later stage asparagine was mostabundant. (Received March 12, 1982; Accepted August 16, 1982)  相似文献   

7.
The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed.  相似文献   

8.
The effects of four exogenous amino acids (proline, glycine, asparagine and serine) on the production of maize embryogenic callus and on its endogenous amino acid content have been investigated. For this purpose, an established embryogenic line of Type 1 callus from the inbred W64Ao2 has been used. From the results it may be concluded that a concentration of proline exceeding 6 mM is negative for the production of embryogenic callus. When proline is eliminated from the medium, other amino acids tested in certain concentrations yield a percentage of embryogenic callus production that exceeds or equals that of proline. The endogenous free proline content in embryogenic callus is significantly higher than that in non-embryogenic callus regardless of proline presence in the medium. The only exception are the glycine-containing media, in which endogenous free alanine of embryogenic callus increases at the expense of endogenous free proline. This study suggest a positive role of endogenous free proline or alanine accumulation in the embryogenic callus production which might be related to an adaptation to the metabolic changes produced by in vitro culture and embryogenesis induction. Furthermore, these results indicate that treatments with amino acids that are different from proline can be used to improve the efficiency of embryogenic callus production from well established maize callus cultures.Abbreviations Ala alanine - Asn asparagine - 2,4-d 2,4-dichlorophenoxyacetic acid - EC embryogenic callus - nEC non-embryogenic callus - Gaba gamma-aminobutyric acid - Glu glutamic acid - Gly glycine - Pro proline - Ser serine  相似文献   

9.
The effect of water stress on the free amino acids in cotton leaves has been investigated. The water deficit, obtained by lowering of osmotic potential through the use of polyethylene glycol (PEG-600) as the osmotic agent, induces an accumulation of free amino acids.Significant modifications in the composition of this fraction are observed. The major differences from treated and untreated leaves are in the levels of γ-aminobutyric acid, asparagine, proline, and glutamic acid and its amide.  相似文献   

10.
Effects of mineral nitrogen (2, 4, 6 and 8 m M NH4NO3) and nodulation with Rhizobium on frost hardiness in seedlings of white clover ( Trifolium repens ) have been studied. Seedlings of a population from Bodø (67°N lat.) were grown in Leonard jars under controlled conditions in a phytotron. For induction of frost hardening, plants were first exposed to 12 h photoperiod conditions for 2 weeks at 18°C, then for 2 weeks at 6°C and finally for 2 weeks at 0.5°C. Frost hardiness after treatments at 6 and 0.5°C was significantly enhanced by increasing nitrogen supply and was positively correlated with total nitrogen content of the stolons. Frost hardiness of nodulated plants correlated to the tissue nitrogen concentration. Content of soluble proteins in stolons decreased during hardening at 6°C but did not change during treatment at 0.5°C. There were minor changes in total amount of free amino acids during hardening. Both absolute and relative amounts of proline and arginine increased, and those of asparagine decreased during hardening. Absolute amounts of all free amino acids increased with increasing nitrogen supply, but the changes during hardening were similar in all treatments. There was a significant increase in the content of soluble carbohydrates during hardening. However, this increase was inversely related to nitrogen supply.  相似文献   

11.
Changes in total nitrogen and free amino acid contents in stemcuttings of Morus alba have been studied. The fresh and dryweights and total nitrogen amounts of the parent stems of cuttingsdecreased initially after cutting. Their increase follows theformation of main roots in cuttings, suggesting that, like carbohydrates,sugars and starch, stored nitrogenous substances are used forsprouting and rooting of cuttings. Amino acids found in stems,roots and shoots are those common in other higher plants withthe exception of pipecolic acid and 5-hydroxypipecolic acid.Significant changes in the levels of asparagine, proline, arginine,-aminobutyric acid and alanine in roots, bark and wood of parentstems were observed during cutting growth, whereas those ofother amino acids remained comparatively constant; the mostpredominant amino acid in the starting materials was proline.while that in the cuttings during growth was asparagine. Theresults suggest that, among free amino acids, asparagine, prolineand arginine play the major part in storage of nitrogen in mulberry.The importance of glut-amine and asparagine in nitrogen metabolismin mulberry has been discussed.  相似文献   

12.
The purpose of this study was to analyse the accumulation of amino acid in source and sink tissues of variegated Coleus blumei Benth. leaves during an extended exposure to salinity stress. The imposed stress resulted in a reduction in shoot height and leaf size, as well as a reduction in total protein and nitrogen content in both the sink and source tissues. At the same time, accumulation of low molecular weight nitrogen-containing compounds in Coleus leaves was observed, which peaked within the first 10 d of exposure to salinity, and then declined, but remained slightly elevated for the remainder of the study. A number of amino acids were found to accumulate in both the sink and source tissues, including arginine, asparagine, and serine. A larger proportion of asparagine and less arginine was observed in the sink tissue than the source tissue of the salinity-stressed plants. This difference may reflect the mobility of these compounds in the phloem. No proline was found to accumulate in either the source or sink tissue during the exposure to salinity. From the pulse-chase labelling of stressed Coleus leaves it can deduced that some of the observed accumulation of amino acids and amides observed is due to de novo synthesis and not simply the result of protein degradation.  相似文献   

13.
The amino acid proline is accumulated in plant tissues in response to a variety of stresses. The existence of two routes for its biosynthesis is well documented. However, little is known about the contribution of each pathway to the accumulation of free proline under stress conditions. In the present study young barley plants were subjected to osmotic stress by treating their roots with 25% polyethylene glycol. Prior to stress imposition roots were incubated for 24 h in nutrient solution containing proline or one of its metabolic precursors: glutamate and ornithine. Free proline quantity in the leaves was measured before and after stress. Relative water content (RWC) was used as a measure of the plant water status. Foliar proline levels showed a significant increase in ornithine- and proline-pretreated plants compared to the control. Nevertheless, no considerable changes in leaf RWC were observed. It was shown that before stress application only ornithine but not glutamate was immediately metabolized to proline. Under stress conditions, however, both precursors were converted into proline. The possible role of this amino acid in the processes of post stress recovery is discussed.  相似文献   

14.
Water stress was imposed upon soybean plants (Glycine max L.)grown in a greenhouse by withholding irrigation for 10 daysafter 5 weeks of growth, and the changes under stress in thelevels of free amino acids, free ammonia and protein were determinedin detail. With a decrease in the leaf water potential, theprotein content gradually decreased, whereas the free ammoniacontent was relatively constant. Water stress induced an increasein the levels of free amino acids normally present in proteinsuch as isoleucine, leucine, valine, phenylalanine, glutamineand histidine, indicating that protein hydrolysis occurs understress. Proline accumulated only under severe stress (below–1.5 MPa) and attained 0.86% of the dry weight on day10 (–2.6 MPa). Asparagine also accumulated only undersevere stress (below –2.0 MPa). The concentration of glutamicacid, alanine, aspartic acid, serine, glycine and arginine remainedvirtually unchanged during the stress period. Total proline(protein-bound+free) first decreased during mild to moderatestress, and then increased over that of the well-irrigated controlplants at severe stress due to a remarkable accumulation offree proline. These findings indicate that some de novo synthesisof proline occurs under severe stress and that the nitrogensource for this proline synthesis may be protein. (Received July 4, 1981; Accepted September 11, 1981)  相似文献   

15.
The effects of biotic and abiotic stresses on changes in amino acids and polyamine levels in Satsuma orange (Citrus unshiu; cultivar Owari) leaves were inves- tigated. Asian citrus psyllids Diaphorina citri (Kuwayama) (ACP) infestation was used to induce biotic stress while a water deficit was imposed to induce abiotic stress. Potted trees were infested by placing 50 psyllids on 3 citrus leaves enclosed in nylon mesh bags for 5 d. A parallel set of plants were kept water stressed by maintaining the soil at 20% water holding capacity for 5 d. Levels of total free amino acids were higher in water stressed and ACP infested leaves. Polyamine putrescine increased in infested leaves but not in water stressed leaves. Proline was the most abundant amino acid and its levels significantly increased by both biotic and abiotic stresses. Proline levels in infested leaves were significantly higher than the water stressed leaves. Histidine, methionine, asparagine, arginine, serine, and leucine levels also increased significantly in infested leaves, but in water stressed leaves only leucine, methionine, and threonine increased. Levels of amino acids, such as tyrosine, isoleucine, phenylalanine, glutamic acid, and alanine, declined in infested leaves. Under water stress asparagine, phenylalanine, serine, and histidine also declined compared to controls. This indicates that while proteolysis occurred under both stresses, metabolic conversion of amino acids was different under the two stresses. In ACP infested leaves some amino acids may be used as feeding material and/or converted into secondary metabolites for defense.  相似文献   

16.
17.
King CA  Purcell LC 《Plant physiology》2005,137(4):1389-1396
Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation.  相似文献   

18.
Free amino acids in 40 herbaceous perennial plants were analyzedunder natural conditions. From the major amino acid contentat the wintering stage, the pools were separated into the followingfive types: 1) a group which accumulated arginine (20 plantsout of 40); 2) a group which accumulated arginine and proline(9 plants); 3) a group which accumulated glutamate and glutamine(3 plants); 4) a group which accumulated asparagine (4 plants);and 5) a group which accumulated proline (4 plants). Changesin the amino acid pools in the plants occurred under snow duringwintering for about five months. Particularly, asparagine wasno longer the major amino acid in the group which had accumulatedit in fall. There was a tendency for the glutamine content toincrease, suggesting that NH3 is utilized for the synthesisof the amide. Also, the relative concentrations of almost allthe free amino acids increased several-fold, which was indicativeof the occurrence of biosynthetic processes of general aminoacids during wintering. As the mobile fractions of stored nitrogen,the amino acids appeared to contribute to the initial stageof rapid growth in early spring. (Received August 4, 1986; Accepted November 17, 1986)  相似文献   

19.
2,4-Diaminobutyric acid (A2bu) may be responsible for the apparent toxicity of flatpea (Lathyrus sylvestris L.) forage to some livestock. To obtain information relative to environmental regulation of A2bu, 3-month old flatpea plants, cv. “Lathco”, were subjected to water-deficit stress for 1, 2, and 4 weeks. A2bu, the most abundant free amino acid in roots, stems, and leaves, increased nearly 100% in roots of stressed plants. Increases in the concentrations of asparagine (Asn), proline (Pro), and arginine (Arg) occurred in roots; Asn, Pro, and 4-aminobutyric acid (Abu) in stems; and Pro and homoserine (Hse) in leaves also occurred in response to drought stress. Proline was a minor constituent of the free amino acid pool, even under water-deficit stress. The distribution of A2bu and Pro in the stressed plants (roots > stems > leaves) was the reverse of that in plants supplied with adequate water (roots < stems < leaves). As concentrations of Asn and Abu decreased from roots to leaves in control tissues, concentrations of Hse and A2bu increased in roughly the same proportions. This observation suggests that Abu and Asn may be precursors of A2bu and Hse, respectively. The increase in A2bu levels in aerial parts of drought-stressed flatpea plants is probably not sufficient to lower the feed value of the forage.  相似文献   

20.
Infection of bean leaves ( Phaseolus vulgaris ) by Xanthomonas campestris pv. phaseoli in the field frequently resulted in the appearance of isolated flaccid areas in green leaf tissue adjacent to necrotic and chlorotic lesions. The flaccid leaf areas had significantly higher stomatal resistances compared to nearby turgid areas on the same leaf, and the turgid areas had stomatal resistances that were the same or only moderately elevated compared to those of healthy leaves. The flaccid tissues also had significantly lower relative water contents than turgid tissues on the same leaf demonstrating that pathogeninduced water stress was localized. The levels of free proline, another indicator of water stress, were directly correlated (r2= 0.556) with disease severity. The change in free proline content implied that water stress increased in direct proportion with the amount of tissue infected. Water stress may be due to the disruption of xylem elements by the invasion of X. c. phaseoli from nearby lesions. One result of xylem invasion could have been severe water deficits which were sufficient to cause stomatal closure and leaf flaccidity; however, this effect was highly localized and the remainder of the diseased leaf was either significantly less water stressed or not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号