首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis We experimentally manipulated fish grazing pressure to determine whether fish herbivory played an important role in the structure of a Costa Rican stream. Non-planktonic plant matter represented a significant percentage ( 25%) of the diet of 77% of the 17 fish species in the community. We prevented fish grazing on macrophytes, tree leaves, and periphyton using fish exclusion cages. Fish grazedPanicum sp., used as a generalized aquatic macrophyte, to the stems after 6 days in control areas, and consumed all or much ofFicus insipida andMonstera sp. leaves when placed in the stream after 48 hours. Plants and leaves experimentally protected by cages remained intact. In periphyton studies, fifty percent more ash free dry weight occurred on 25 × 25 cm floor tiles protected from fish grazing by cages than on tiles in roofless controls exposed to fish grazing for 19 days, suggesting a reduction in periphyton biomass. These results demonstrate that fish herbivory affects macrophyte abundance, and impacts the amount of leaf litter in the stream. Fish herbivory may also have an important effect on overall periphyton biomass. Herbivorous fish species generally represent a larger proportion of the total fish community in tropical compared to temperate streams; thus fish grazing is more likely to have an important influence on plant and animal abundances and distributions in tropical streams.  相似文献   

2.
Hon WC  Griffith M  Chong P  Yang D 《Plant physiology》1994,104(3):971-980
Apoplastic extracts of cold-acclimated winter rye (Secale cereale L. cv Musketeer) leaves were previously shown to exhibit antifreeze activity. The objectives of the present study were to identify and characterize individual antifreeze proteins present in the apoplastic extracts. The highest protein concentrations and antifreeze activity were obtained when the leaf apoplast was extracted with ascorbic acid and either CaCl2 or MgSO4. Seven major polypeptides were purified from these extracts by one-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis under nonreducing conditions. The five larger polypeptides, of 19, 26, 32, 34, and 36 kD, exhibited significant levels of antifreeze activity, whereas the 11- and 13-kD polypeptides showed only weak activity. Five of these polypeptides migrated with higher apparent molecular masses on SDS gels after treatment with 0.1 M dithiothreitol, which indicated the presence of intramolecular disulfide bonds. The apparent reduction of the disulfide bonds did not eliminate antifreeze activity in four of the polypeptides that contained intramolecular disulfide bonds and exhibited significant levels of antifreeze activity. The amino acid compositions of these polypeptides were similar in that they were all relatively enriched in the residues Asp/Asn, Glu/Gln, Ser, Thr, Gly, and Ala; they all lacked His, except for the 26-kD polypeptide, and they contained up to 5% Cys residues. These polypeptides were examined with antisera to other cystine-containing antifreeze proteins from fish and insects, and no common epitopes were detected. We conclude that cold-acclimated winter rye leaves produce multiple polypeptides with antifreeze activity that appear to be distinct from antifreezes produced by fish and insects.  相似文献   

3.
Generalized linear models were used to test the effect of fish, using ponds with and without fish and habitat features as covariates, on richness and abundance of amphibian species. Five fish species and six amphibian species were recorded in 60 permanent ponds located in central Italy. The choice of covariates (macrophyte cover and pond surface area) was made after studying the correlations. The richness of amphibian species was not significantly affected by fish presence or macrophyte cover, in line with previous studies, since almost all the fish species were non-predatory. However, abundance of urodeles (newts) was negatively affected by fish and positively affected by macrophyte cover. Although fish may strongly influence the abundance and composition of amphibian communities, the results indicate that the cover of aquatic macrophytes may increase the available habitat for amphibians and therefore their abundance. Anuran species preferred ponds where fish were present, since both groups preferred larger ponds. Concordance between fish and amphibian species composition was not found by the Mantel and Partial Mantel tests. This indicates that the fish assemblages do not predict which amphibian species occur in the pond.  相似文献   

4.
The present study was designated to evaluate semi-quantitative antileishmanial activity of alkaloidal extracts that were obtained from 1g of different parts of Aspidosperma ramiflorum (leaves, roots, seeds, and stem barks). Alkaloidal extracts of barks and leaves presented a good activity against the extracellular form (promastigotes) of Leishmania (L.) amazonensis. It is known that compounds responsible for the antileishmanial activity in the alkaloidal extracts from A. ramiflorum are the monoterpenoid indole alkaloids ramiflorine A and ramiflorine B, therefore extracts obtained from different plant parts were analyzed by electrospray ionization mass spectrometry (ESI-MS) in order to evidence the presence of these bioactive alkaloids. Based on these findings, alkaloidal extract from leaves was fractionated on preparative thin-layer chromatography in a bioassay-guided fractionation affording individual purified ramiflorines A and B. Both ramiflorines A and B showed significant activity against Leishmania (L.) amazonensis (LD(50) values of 18.5±6.5μg/ml and 12.63±5.52μg/ml, respectively). Our results are showing that alkaloidal extract from leaves is a promising alternative to the use of stem barks from A. ramiflorum.  相似文献   

5.
1. Freshwater fish can affect aquatic vegetation directly by consuming macrophytes or indirectly by changing water quality. However, most fish in the temperate climate zone have an omnivorous diet. The impact of fish as aquatic herbivores in temperate climates therefore remains unclear and depends on their dietary flexibility. 2. We tested the effects of a flexible omnivore and an herbivore on aquatic vegetation by comparing the effects of rudd (Scardinius erythrophthalmus, the most herbivorous fish in temperate climates) with grass carp (Ctenopharyngodon idella) in a mesocosm pond study. Exclosures distinguished herbivorous effects of fish on submerged macrophytes from indirect effects through changes in water quality, whereas stable isotope food‐web analysis provided information on fish diets. 3. We hypothesised that rudd, with its flexible diet and preference for animal food items, would only indirectly affect macrophytes, whereas grass carp, with its inflexible herbivorous diet, would directly affect macrophyte biomass. 4. Only grass carp significantly reduced macrophyte biomass through consumption. Rudd had no effect. Food‐web analysis indicated that rudd predominantly consumed animal prey, whereas grass carp included more plants in their diet, although they also consumed animal prey. Grass carp significantly affected water quality, resulting in lowered pH and increased N‐NH4 concentrations, whereas more periphyton growth was observed in the presence of rudd. However, the indirect non‐herbivorous effects of both fish species had no effect on macrophyte biomass. 5. Both fish species should be considered as omnivores. Despite the fact that rudd is the most herbivorous fish in the western European climate zone, its effect on submerged macrophyte biomass is not substantial at natural densities and current temperatures.  相似文献   

6.
Macrophyte rafts can enhance fish dispersal in the Amazon River basin, and determining whether raft properties (e.g., size and plant species richness) can predict fish species richness and composition is important in order to understand the underlying factors of fish dispersal. We tested for a relationship between the plant species richness and fish species richness in the rafts and determined whether there exists a significant pattern of concordance between rafts composition and fish assemblages in a River–Lake system close to Manaus, Amazonas, Brazil. We estimated the cover of each species of macrophyte and collected fish in 20 macrophyte rafts of different sizes. Macrophyte species richness was not a good predictor of fish species richness. We found a significant correlation between the compositional similarities of macrophytes and fishes when the data for presence/absence were analyzed, but not when abundance data were used. However, the congruence patterns were clearly related to raft size, and we found a correlation between plants and fishes, using both presence/absence and abundance data, when only large rafts were used in the analysis. For small rafts, there were no significant correlations using any type of data. These findings show that the composition of fish assemblage dispersal in the rafts depends on the composition of macrophytes of which the rafts are composed and on stochastic processes of raft splitting.  相似文献   

7.
The activity of porphobilinogen deaminase was measured in young and senescent or mature leaves of pepper (Capsicum annuum), and poinsettia (Euphorbia pulcherrima). Whereas high activity was found in the crude extracts of the young leaves, almost no activity was found in the extracts of senescent or mature leaves. The decrease in deaminase activity was not due to the presence of an isolatable inhibitor. By purifying the crude enzyme extracts from leaves of different ages on DEAE-cellulose columns it was shown that the decrease in deaminase activity was due to a real decrease in the amount of enzyme. Fruiting also decreased porphobilinogen deaminase activity. Several kinetic constants of the C. annuum deaminase were determined.  相似文献   

8.
1. The diurnal variations in the habitat choice of the periodically plant-attached cladoceran Sida crystallina together with light environment and predator abundance were studied.
2. The density of S. crystallina attached to floating leaves of Nuphar lutea increased between 18:00 and 20:00 hours, when light intensity underneath the leaves was temporarily increased, and decreased again when light intensity declined. A proportion of S. crystallina remained in the swimming mode underneath the leaves even during daylight, indicating that the water column sheltered by the leaves is safer than the open water.
3. In the water adjacent to the leaves, the density of S. crystallina increased steeply in the dark. The increase was not accompanied by a decrease in S. crystallina attached to plant leaves, indicating that the nocturnal increment in the open water density of S. crystallina was due to migration from daytime refuges other than floating leaves.
4. Sida crystallina was most intensively consumed by perch ( Perca fluviatilis ). Predation threat by fish had weaker effects on the density of S. crystallina attached to plant leaves than on cladocerans in the adjacent water. Cladocerans underneath floating plant leaves, whether attached or not, are probably less vulnerable to fish predation than those outside the leaf cover.
5. The results suggested that light intensity is the proximate factor regulating the attachment of zooplankton to the lower surfaces of floating macrophyte leaves. Light intensity has a positive effect on the density of S. crystallina attached to the floating leaves and a negative effect on density in the water. Predation threat by fish has a strong effect on the migration of zooplankters into the open water habitat.  相似文献   

9.
The role of minor components of the leaves ofZostera marina L. in altering the activity of micro-organisms directly and indirectly by affecting amphipod grazers was investigated in laboratory experiments. Water-soluble extracts of eelgrass leaves inhibited the growth of many marine bacteria and a micro-alga (Platymonas sp.) at concentrations equivalent to as little as 10 g dry wt. of leaf.ml–1. The potency of leaf extracts was higher in young, actively metabolizing tissue than in older leaves, and was higher in leaves collected in summer during rapid growth than in winter. Water-soluble inhibitors may explain the low biomass of epiphytes on actively growing leaves. Phenolic acids, previously identified in eelgrass leaves, may account for part of the antimicrobial activity. Three free phenolic acids inhibited the test micro-organisms at concentrations as low as 2 M; caffeic acid was more potent than either protocatechuic or gentisic acid. Extracts of young leaves also inhibited grazing by amphipods on dead leaves. The time required for leaching of soluble inhibitors may account for the delay observed between the loss of leaves from the plants and the onset of grazing. Thus, interactions among the biotic components of the detritus ecosystem may be significantly modified by minor components of the macrophyte tissue.  相似文献   

10.
Many macrophyte species in lowland streams exhibit signs of grazing and herbivore damage, even though herbivory by aquatic macroinvertebrates and fish is generally considered to be of little importance. In this study, we collected evidence for the hypothesis that herbivory on macrophytes by macroinvertebrates and fish is more widespread than assumed. We measured the dual stable isotope signatures (δ13C and δ15N) of organic matter, epiphyton, submerged macrophytes, macroinvertebrates and fish in a Belgian lowland stream. There was a clear distinction in isotopic signatures of the different basal resources, allowing the use of the SIAR mixing model. These calculations revealed the consumption of macrophyte tissue not only by the phytophagous larvae of Nymphula nitidulata Hufnagel (Lepidoptera: Crambidae), but also by Baetidae nymphs (Ephemeroptera), Orthocladiinae larvae (Diptera: Chironomidae), the crayfish Orconectus limosus Rafinesque (Decapoda: Cambaridae) and the fish Gobio gobio L. (Cypriniformes: Cyprinidae) which are classified as feeding on other resources. Although the potential share of macrophyte biomass in the diet of macroinvertebrates and fish was demonstrated to be up to 49%, this amount is only a small percentage of the total standing macrophyte biomass in a lowland stream. However, the impact of this herbivory may still be substantial because consumption may comprise a significant fraction of the daily primary production. Additionally, small-scale herbivory may still have a negative impact on macrophyte growth and survival, for example through consumption of apical meristems and the increased susceptibility to diseases and toxins if the macrophyte’s epidermis is damaged.  相似文献   

11.
1. To study two factors which are predicted as causing changes to community structure in cut-off meanders (colloquially known in Australia as billabongs, a term of aboriginal origin), 16 experimental billabongs were constructed. These were designed to test two hypotheses: (a) that the structure of macrophyte and invertebrate communities within billabongs is altered by changing the pattern of flooding; and (b) that the presence of small planktivorous fish alters invertebrate community structure and diversity within billabongs.
2. An increase in the duration of flooding seems to favour animals better adapted to a greater availability of macrophyte habitat. Changing the seasonality of flooding resulted in prolonging of the time water was available over the summer months.
3. The presence of a planktivorous fish appears to affect macroinvertebrate communities through competition with other planktivores. Variable top-down pressure may create differing successional patterns and ultimately different communities at lower trophic levels.  相似文献   

12.
Warfe DM  Barmuta LA 《Oecologia》2006,150(1):141-154
A considerable amount of research has investigated the influence of habitat structure on predator success, yet few studies have explored the implications for community structure and food-web dynamics. The relative importance of macrophyte structure and fish predation on the composition of the macroinvertebrate and periphyton communities in a lowland river was investigated using a multifactorial caging experiment. We hypothesised that: (1) fish predators are less effective in a more structurally complex macrophyte analogue; (2) strong direct and indirect effects of fish predators (e.g. trophic cascades) are less likely to occur in a structurally complex habitat; and (3) the strength of these patterns is influenced by the composition of the prevailing community assemblage. We measured the abundance and composition of the macroinvertebrate and periphyton communities associated with three different-shaped macrophyte analogues, under different fish predator treatments and at different times. Macrophyte analogue architecture had strong, consistent effects on both the macroinvertebrate and periphyton communities; both were most abundant and diverse on the most structurally complex plant analogue. In contrast, the fish predators affected only a subset of the macroinvertebrate community and there was a suggestion of minor indirect effects on periphyton community composition. Contrary to expectations, the fish predators had their strongest effects in the most structurally complex macrophyte analogue. We conclude that in this system, macrophyte shape strongly regulates the associated freshwater assemblage, resulting in a diverse community structure less likely to exhibit strong effects of fish predation.  相似文献   

13.
The impact of the crayfish Orconectes virilis on aquatic macrophytes   总被引:1,自引:0,他引:1  
SUMMARY. 1. The impact of crayfish on the biomass, density and shoot morphology of four submersed plant species was examined under semi-natural conditions. Male or female crayfish ( Orconectes virilis ) were held for 5 weeks at biomasses of 0, 5, 10 or 18 g m−2 (live weight) in twelve plastic pools (4.67 m2, surface area) containing Potamogeton richardsonii, Myriophyllum exalbescens, Nuphar variegatum and Sparganium eurycarpum .
2. Crayfish significantly affected biomass, density and/or shoot morphology of all four macrophyte species. Differences in the effect of crayfish on macrophyte growth were related to plant species, crayfish sex and activity, and the abundance of alternative foods.
3. The effect of female crayfish on macrophyte growth was generally stimulatory. Myriophyllum and Potamogeton biomass, Potamogeton density and Myriophyllum length increased in the presence of female crayfish, possibly due to the reduction in herbivorous snails as a result of crayfish predation. In contrast, plant growth decreased in the presence of male crayfish: Myriophyllum, Nuphar and Potamogeton biomass, Myriophyllum and Sparganium density, and Sparganium and Poiamogeton length were reduced at male crayfish biomasses between 5 and 18 g m−2.
4. These results indicate that even relatively low densities of crayfish can greatly affect the growth of submersed aquatic plants. Because of their ability to modify aquatic macrophyte, macroinvertebrate and, ultimately, fish communities, the introduction of crayfish into lakes where they do not occur could have a major effect on the structure and composition of the littoral zone.  相似文献   

14.
The first results of a long-term study on the role of riparian ecotones on the population and community dynamics of Iberian stream fish are presented and discussed. Riparian and macrophyte cover, bank slope and depth were among the most important variables affecting fish distribution. In general small fish favoured shallow areas with high macrophyte cover, whereas large fish dominated in deep areas with a high riparian cover. Slight spatial changes in terrestrial prey use were found suggesting a minor role for this resource during autumn. Finally, no significant spatial differences were found for linear growth, although some differences were obtained for the condition factor.  相似文献   

15.
Summary We began this experiment to test specific hypotheses regarding direct and indirect effects of fish predation on the littoral macroinvertebrate community of Bays Mountain Lake, Tennessee. We used 24 m2 enclosures in which we manipulated the presence and absence of large redear sunfish (Lepomis microlophus>150 mm SL), and small sunfish (L. macrochirus and L. microlophus <50 mm SL) over a 16-mo period. Here we report on effects of fish predation on gastropod grazers that appear to cascade to periphyton and macrophytes.Both large redear sunfish and small sunfish maintained low snail biomass, but snails in fish-free controls increased significantly during the first 2-mo of the experiment. By late summer of the first year of the experiment, the difference in biomass between enclosures with and without fish had increased dramatically (>10×). Midway through the second summer of the experiment, we noted apparent differences in the abundance of periphyton between enclosures containing fish and those that did not. We also noted differences in the macrophyte distribution among enclosures. To document these responses, we estimated periphyton cover, biovolume and cell size frequencies as well as macrophyte distributions among enclosures at the end of the experiment. When fish were absent, periphyton percent cover was significantly reduced compared to when fish were present. Periphyton cell-size distributions in enclosures without fish were skewed toward small cells (only 12% were greater than 200 m3), which is consistent with intense snail grazing. The macrophyte Najas flexilis had more than 60 x higher biomass in the fish-free enclosures than in enclosures containing fish; Potamogeton diversifolius was found only in fish-free enclosures. These results suggest a chain of strong interactions (i.e. from fish to snails to periphyton to macrophytes) that may be important in lake littoral systems. This contrasts sharply with earlier predictions based on cascading trophic interactions that propose that fish predation on snails would enhance macrophyte biomass.  相似文献   

16.
1. Many animals that consume freshwater macrophytes are omnivorous (i.e., they include both plant and animal matter in their diet). For invertebrate omnivorous consumers, selection of macrophyte species depends partly on the presence of secondary metabolites in plants, plant carbon/nutrient balances and/or physical structure of plants. However, little is known about the mechanisms influencing consumption of macrophytes in aquatic vertebrates. 2. For two fish species, the omnivorous rudd (Scardinius erythrophthalmus) and herbivorous grass carp (Ctenopharyngodon idella), feeding preferences were determined in three choice experiments. We tested (i) whether the presence of secondary metabolites and macrophyte stoichiometry affects macrophyte species selection by fish, (ii) the importance of macrophyte stoichiometry by manipulating the macrophytes experimentally and (iii) the rate of herbivory when the most palatable macrophyte is offered simultaneously with a common animal prey. 3. In a choice experiment with five species of submerged macrophytes (Callitriche sp., Chara globularis, Elodea nuttallii, Myriophyllum spicatum and Potamogeton pectinatus), Myriophyllum was clearly consumed least by both fishes, which strongly correlated with the highest phenolic concentration of this macrophyte. Additionally, a significant negative relationship was found between consumption and C : N ratio of the five macrophytes. The two most consumed macrophytes also had the lowest dry matter concentration (DMC). 4. In a second choice experiment, the C : N ratio of the least (Myriophyllum) and most (Potamogeton) palatable plants was manipulated by growing the macrophytes under fertilised and unfertilised conditions and subsequently feeding them to rudd. The avoidance of consumption of the chemically defended Myriophyllum by rudd was partly alleviated by the lowered C : N ratio. 5. The third choice experiment showed that both fishes preferred animal prey (the amphipod Gammarus pulex) over the most palatable macrophyte (Potamogeton) when offered simultaneously. The C : N ratio of the amphipods was about half that of the lowest C : N ratio measured in the macrophytes. Consumption by the fishes could not clearly be related to C : P or N : P ratios of prey items in any of the experiments. 6. We conclude that omnivorous fish avoid macrophytes that are chemically defended. However, when these defences are only minor, stoichiometry (C : N ratio) in combination with DMC may be a determining factor for consumption by vertebrate facultative herbivores.  相似文献   

17.
运用8种网目规格的成套浮性刺网作为鱼类采样工具,于2005年夏季在长江中游浅水草型湖泊牛山湖进行鱼类定量采样,通过比较不同茂密程度黄丝草生境中的小型鱼类组成、数量和大小结构,探讨此类湖泊小型鱼类的空间分布特征及其与沉水植被的关系.采样期间共捕获13种1124尾鱼,依据其等级丰度和出现频次,鳖和红鳍原鲌为该湖优势上层小型鱼类.在调查的沉水植物生物量范围内,鱼类物种丰富度和Shannon多样性指数与沉水植物生物量之间呈现倒抛物线关系;两种优势小型鱼类的种群丰度均与沉水植物生物量有着显著的线性正相关关系,且其平均个体大小在裸地生境较高、沉水植被茂密区较低,幼鱼更倾向群聚于厚密的黄丝草生境中;其他生境因子(水深和离岸距离)对鳖和红鳍原鲐空间分布的影响不显著.黄丝草植被生境是牛山湖两种优势小型鱼类的重要保护生境,应加强对黄丝草等沉水植被的保护及恢复.  相似文献   

18.
Fish kills are a common occurrence in shallow, eutrophic lakes, but their ecological consequences, especially in the long term, are poorly understood. We studied the decadal-scale response of two UK shallow lakes to fish kills using a palaeolimnological approach. Eutrophic and turbid Barningham Lake experienced two fish kills in the early 1950s and late 1970s with fish recovering after both events, whereas less eutrophic, macrophyte-dominated Wolterton Lake experienced one kill event in the early 1970s from which fish failed to recover. Our palaeo-data show fish-driven trophic cascade effects across all trophic levels (covering benthic and pelagic species) in both lakes regardless of pre-kill macrophyte coverage and trophic status. In turbid Barningham Lake, similar to long-term studies of biomanipulations in other eutrophic lakes, effects at the macrophyte level are shown to be temporary after the first kill (c. 20 years) and non-existent after the second kill. In plant-dominated Wolterton Lake, permanent fish disappearance failed to halt a long-term pattern of macrophyte community change (for example, loss of charophytes and over-wintering macrophyte species) symptomatic of eutrophication. Important implications for theory and restoration ecology arise from our study. Firstly, our data support ideas of slow eutrophication-driven change in shallow lakes where perturbations are not necessary prerequisites for macrophyte loss. Secondly, the study emphasises a key need for lake managers to reduce external nutrient loading if sustainable and long-term lake restoration is to be achieved. Our research highlights the enormous potential of multi-indicator palaeolimnology and alludes to an important need to consider potential fish kill signatures when interpreting results.  相似文献   

19.
The spotted alfalfa aphid,Therioaphis trifolii maculata (Buckton), caused local browning of cells surrounding feeding sites on lucerne plants (cv. Hunter River). Aqueous extracts of infested leaves underwent a marked browning process that did not occur in extracts of healthy leaves. The process was accelerated by addition of tyrosinase and peroxidase and reversed by reducing agents such as ascorbate and glutathione. In the presence of added reducing agents, the extracts produced brown precipitates, probably conjugates of phenolics with leaf proteins similar to those involved in the sealing of damaged tissuesin vivo. Partially autoxidised catechin (PAC) solutions showed an absorbance peak at 438 nm that was increased by polyphenol oxidase and decreased by ascorbate and glutathione. When extraction of tissues into PAC was used to assess redox activities, healthy tissues showed a rapid, short lived oxidising activity combined with a much more persistent reducing activity, whereas infested leaves had even greater oxidising activity and no detectable reducing activity. Soluble phenolics increased in infested leaves and stems. Total protein decreased, but the specific activity of peroxidase, catechol oxidase and superoxide dismutase relative to protein content increased. The ability of extracts to reduce cytochrome c increased, indicating an overall increase in superoxide radicals in attacked tissues. These results are consistent with a general disturbance of redox balance induced in tissues by aphid feeding, including accumulation of oxidases and phenolic substrates and loss of reducing activity and protein.  相似文献   

20.
OPINION Manipulating lake community structure: where do we go from here?   总被引:1,自引:0,他引:1  
SUMMARY. 1 More than 10 years experience with whole lake pelagic manipulation has suggested some general trends applicable to all freshwater pelagic communities and some specific trends related to lake depth.
2 Among the general trends is the observation that the trophic cascade is strongly damped. This means that changes in phytoplankton biomass can be assured only when the fish community is strongly manipulated.
3 Among the depth related trends is the observation that in shallow lakes, changes in fish community structure are more likely to have cascading impacts on phytoplankton than are changes in deep lakes.
4 In shallow lakes, fish removal frequently results in decreased turbidity which is associated with the development of dense macrophyte populations and significant reductions of algal standing stocks. The mechanisms involve: increased grazing by zooplankton, the removal of fish induced bioturbation and nutrient recycling, and direct and indirect macrophyte effects (shading, zooplankton refuges and competition for nutrients).
5 In shallow lakes, where planktivore biomass can be regulated and macrophyte development is acceptable, fish biomanipulalions are likely to result in reduced algal populations and improved water quality.
6 In deep lakes, where macrophytes are not as important, long-term effects of fish manipulations are strongly dependent upon the probability of non-grazable algal bloom development. This is determined by many factors (chemical, physical and grazer related) which modify the impact that grazers have on phytoplankton biomass.
7 In deep lakes, successful fish biomanipulations may only be effective when chemical and physical factors are altered to produce algal species compositions that permit strong top-down control of prey by predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号