首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated phytoplankton biomass, assemblage structure and production along an environmental gradient to evaluate if chlorophyll-a (as proxy for biomass) and primary production peaked under conditions hypothesised to favour phytoplankton growth. During Spring 2003, a wide area from shallow estuarine waters to the shelf slope off the Río de la Plata was sampled and routine measurements included CTD profiles, nutrients, chlorophyll-a, phytoplankton composition and abundance, seston and organic matter loads, downwelling light and, at selected stations, production versus irradiance experiments. Spatial differences in abiotic variables suggested distinct hydrographic zones that differed in phytoplankton biomass and productivity. Chlorophyll-a was highest under estuarine influence and peaked at low salinity when strong stratification developed in the outer estuary, and was minimum at the shelf break and slope. In that area, however, relatively high chlorophyll-a was associated to oceanographic fronts and to the occurrence of Sub Antarctic water within the photic depth range. Productivity was maximum in shallow waters, but biomass-specific productivity peaked at the outer shelf in oceanographic fronts or in upwelled Sub Antarctic waters. Over shelf and slope waters productivity and biomass were not tightly coupled, as indicated by situations of high biomass and low productivity (Station 9), low biomass and high productivity (Station 10), or both high biomass and productivity (Station 22). Ordination analysis of phytoplankton taxa suggested that assemblages changed gradually along the environmental gradient and correlated to abiotic variables defining geographic zones. Overall results were consistent with an interpretation that phytoplankton biomass and growth were modulated by light in estuarine and coastal waters, and by hydrographic processes on the continental shelf and slope. Handling editor: Luigi Naselli-Flores  相似文献   

2.
Tátrai  I.  Tóth  G.  Ponyi  J. E.  Zlinskzky  J.  Istvánovics  V. 《Hydrobiologia》1990,200(1):167-175
Enclosures (17 m3) were used in the mesotrophic area of Lake Balaton to determine the impact of benthivorous bream (Abramis brama L.) on the lower trophic levels during summers of 1984–86. In enclosures with a fish biomass similar to the biomass in the eutrophic area of the lake, the number of phytoplankton species was highest. In enclosures with a low fish biomass the phytoplankton was dominated by the greens. A high biomass of bream in the mesotrophic basin caused bacterial production corresponding to that of the eutrophic part of the lake. Crustaceans were dominated by copepods and were unable to control phytoplankton peaks. Bottom-up effects of bream were more obvious than top-down effects and seem to be more important in the possible control of water quality.  相似文献   

3.
4.
Summary During the autumn of 1987 a survey was carried out in the Atlantic sector of the Southern Ocean in order to study phytoplankton community structure in relation to hydrological features. The positions of the boundary zones, determined by means of hydrological and chemical properties (especially silicic acid) match with previous studies. The phytoplankton community structure was studied by means of algal pigment fingerprints. A cluster analysis of the main phytoplankton pigments revealed the presence of four distinctive phytoplankton communities in the area. In three cluster groups phytoflagellate pigments of different taxonomical groups were found which showed different relative abundance between the cluster groups. In between the Polar Front Zone and the Weddell Scotia Confluence a fourth group was found which was rich in diatoms as compared to the other cluster groups. High concentrations of the fucoxanthin related 19-hexanoyloxyfucoxanthin indicated the relative importance of Prymnesiophyceae during fall in this area. The relative contribution of each taxonomical group to total phytoplankton biomass was estimated by using specific pigment ratios. This calculation showed that in this time of the year phytoflagellate biomass (especially Prymnesiophytes) surpasses diatom biomass.  相似文献   

5.
九龙江西溪漳州段浮游植物组成与环境因子的关系   总被引:1,自引:0,他引:1  
分别在2010年的丰、平、枯3个时期,从浮游植物种类组成、生物量(叶绿素a含量)及其粒级结构等指标对九龙江漳州段浮游植物组成进行了调查,同时分析了其与环境因子间的关系,评估了该河段的水质质量。结果表明:研究区域微微型浮游植物占总生物量比例与温度存在显著的正相关性(P<0.05),小型浮游植物占总生物量比例与总氮成显著的负相关(P<0.05)。共鉴定出浮游植物7门59种,且在各时期均有差异;丰水期与枯水期相比,蓝藻比例上升(P<0.05),甲藻比例下降(P<0.05);研究水域Shannon-Wiener指数在1.0~3.0,为中度污染。典型对应分析表明,温度和营养盐是影响九龙江西溪漳州段浮游植物群落变化的主要环境因子。  相似文献   

6.
Environmental factors accountable for bacterioplankton or phytoplankton biomass dominance were analysed in a confined Mediterranean salt marsh (Empordà Wetlands, NE Spain). Two basins located in the same salt marsh, and with differences in size and catchment's area were compared, during four characteristic situations of the hydroperiod. Since bacterio- or phytoplankton relationships may be affected by other factors such as diel variations or vertical differences in nutrient composition and distribution, high frequency fluctuations due to these factors were also taken into account. Differences in catchment area appeared to be the more plausible explanation of differences in nutrient and organic carbon accumulation among basins, since during confinement basins essentially accumulate the allochthonous nutrient and organic matter supplies that previously entered by runoff. DOC (Dissolved Organic Carbon) favoured the bacterioplankton biomass increase, but also was the main variable significantly affecting phytoplankton biomass. Basins showed marked differences in bacterio- and phytoplankton dominances. Relationships between phytoplankton and bacterioplankton were positive, negative or not significant, depending on the basin and on the period of the year. The phytoplankton mixotrophic capabilities, both phagotrophy and osmotrophy, and their production of UV-screening compounds, as sunscreen, may explain the significant correlation between DOC and phytoplankton biomass, and the significant effect of phytoplankton on bacterioplankton found in these ecosystems.  相似文献   

7.
党晓岩  伍玉梅  樊伟  纪世建  杨胜龙 《生态学报》2017,37(23):8039-8047
基于地理位置、纬度和生态特征的不同在东海选取了9个面积相同的子区域,采用1997-2015年由SeaWiFS(Sea-Viewing Wide Field-of-View Sensor)和MODIS(Moderate-Resolution Imaging Spectroradiometer)传感器获得的叶绿素a浓度资料,对我国东海浮游植物生物量的时空变化和藻华现象进行了分析。通过高斯曲线模型拟合,得到了藻华爆发的起始时间、峰值时间、结束时间及持续时间。研究表明东海浮游植物生物量在空间上的分布规律为:外海浮游植物生物量小于近岸;长江口和台州列岛海域的浮游植物生物量较大,近黄海海域的两个区域次之,较小的位于南麂列岛海域和台湾海峡,越靠近南部海域浮游植物生物量越低。藻华发生的规律为:以南麂列岛为分界线,由高纬度到低纬度,浮游植物到达藻华发生峰值的时间持续推后,爆发持续时间增长。  相似文献   

8.
长江口冬季和春季浮游植物的粒级生物量   总被引:6,自引:1,他引:5  
根据2005年2月28日—3月10日和5月30日—6月4日在长江口及其邻近水域进行的多学科综合外业调查,报道了冬季和春季浮游植物粒级生物量的空间分布和组成特征,并探讨了影响浮游植物粒级生物量的环境因子.结果表明:冬季长江口及其邻近水域表层叶绿素a平均浓度为1.28 mg·m-3,高值区集中在口门附近;小粒径浮游植物(<20 μm)对浮游植物生物量的贡献率为66.7%,但在冲淡水区大粒径浮游植物(>20 μm)占据优势.春季长江口及其邻近水域表层叶绿素a浓度大幅增加,口门内、外的平均值分别为0.67和6.03 mg·m-3,122.5°—123.0° E间水域因水华爆发出现显著的叶绿素a高值区;小粒径浮游植物对浮游植物生物量的贡献高达83.5%,其优势在水华区尤为明显.典型站位浮游植物粒级生物量的垂向分布显示,2种粒径浮游植物叶绿素a浓度的差异随水深增加而减小,至底层二者浓度相当.根据所获的环境因子资料,盐度和营养盐是影响长江口及其邻近水域浮游植物粒级生物量分布和组成的重要环境因子.  相似文献   

9.
By means of determination analysis, optimum values of phytoplankton biomass and its divisions are calculated. These values provide development of high biomass of such primary consumers as zooplankters. It is shown that representatives of Rotatoria have higher levels of optimum biomass than Crustacea. In the Kara region it is possible to ascertain the increase of such levels for Cladocera in comparison with Copepoda. The prediction of zooplankton communities’ development is carried out using values of optimum biomass of phytoplankton. Accuracy of the forecast in the Azov area is highest, i.e., quantitative requirements of zooplankton for fodder phytoplankton here are poorly subject to variability in time.  相似文献   

10.
Summary Phytoplankton biomass and species composition were studied in transects through the ice edge region of the Greeland Sea from 19 July to 8 August 1984. Biomass was estimated by vertical in situ chlorophyll fluorescence and pigment extraction of discrete samples. Preserved material was used for identification of phytoplankton species and calculation of their relative abundances. The results suggest that the various geographical regions of the Greenland Sea differ considerably in their phytoplankton development. Autotrophic biomass and species composition were closely associated with the extent of the annual and seasonal ice cover, hydrographic conditions, nutrient availability and the water masses typical of the different domains. In the NE Greenland polynya a deep mixed layer inhibited the development of a phytoplankton bloom, whereas greatest biomass concentrations were associated with a receding ice edge on the E Greenland Shelf. In the Fram Strait, the position of the relatively stationary ice edge is controlled by frontal dynamics, currents and wind. Due to rapidly changing physical and chemical conditions, phytoplankton biomass showed great variability between stations. High chlorophyll a concentrations may develop locally where melting ice causes stratification or can result from passive accumulation in eddies. In July/August 84 the Fram Strait area was dominated by a typical summer population of flagellates and large diatom species.Contribution 6 of the Alfred-Wegener-Institute for Polar and Marine Research  相似文献   

11.
In the French area of the Eastern English Channel, the coastalwaters 3 or 4 miles wide are separated from offshore watersby a coastal front. The phytoplanktonic biomass (B) and production(P) are higher in coastal waters, and an increase of biomasshas been observed at the interface. This frontal biomass, lessproductive, resulted from hydrodynamic accumulation, not dueto local growth. The productivity (P/B) deficit (50%) spreadsover the external area of the front, probably because the biomassis partly constituted of exported inactive coastal phytoplankton.The productivity is higher again in offshore waters. The variationof the pigment pool indicates a stress on phytoplankton in thefront and this ergocline was not productive at the time of thetwo cruises.  相似文献   

12.
Studies were carried out in Lake Mutek (Mazurian Lakeland) on the effect of artificial aeration and destratification upon quantitative changes in the phytoplankton. These studies were carried out from 1977 until 1983. Two different methods of aeration were used. Low intensity mixing resulted initially in a two-fold, and later on in a four-fold increase of the phytoplankton biomass. Increase of phytoplankton biomass during lake aeration was due to the development of Ceratium hirudinella. Use of a highly effective air-compressor caused an inhibition of algal development, so that biomass dropped to levels noted in the control year. It was found that the effect of aeration depended on the ratio between lake area and effectiveness of the aerator. Only intensive mixing of the water masses resulted in an inhibition of the development of algae. The effect of artificial destratification was also reflected in changes of the species structure, seasonal succession of the algae, and physiological state of the phytoplankton. Artificial circulation stimulated development of algae characterized by relatively high specific weight, i.e. most of all of Pyrrophyta, Bacillariophyceae and some species of Chlorophyta. Various aspects were discussed of the use of direct aeration as a technical method of lake restoration.  相似文献   

13.
为揭示寒旱区冰封期富营养化湖泊水体中浮游植物群落结构及其与水质指标的响应关系,该研究以乌梁素海为对象,于2019年1月在湖区设立12个采样点采集水样及浮游植物,通过对浮游植物定性定量检测和水体理化性质测定分析,以明确冰封期乌梁素海浮游植物群落结构空间变化特征及主要水质指标的分布规律;结合RDA分析和Pearson相关性分析揭示了浮游植物与水质指标的响应关系,为水体富营养化程度评估及防控提供理论依据。结果显示:(1)冰封期乌梁素海12个样点的水质指标特征差异明显,各水质指标从北到南具有不同的变化趋势。(2)冰封期乌梁素海共检出浮游植物61种,其中隐藻门的丰度最高(4.76×10^(6)个·L^(-1)),甲藻门的生物量最高(18.09 mg·L^(-1)),但湖区不同位置的优势浮游植物类群有所差异,北湖区蓝隐藻和伪鱼腥藻丰度明显高于南湖区。(3)不同种类的浮游植物在空间分布上存在明显的差异,且在P3样点的多样性最低,P8样点的多样性最高,并发现中、下湖区物种类型多且组成较为均匀。(4)浮游植物的丰度与TP呈显著正相关关系,生物量与TP呈极显著正相关关系,多样性指数与TP呈正相关关系。研究表明,冰封期乌梁素海水体处于中等营养水平,水体中总磷(TP)含量是影响浮游植物物种丰度和生物量的主要影响因子;寒旱区冰封期富营养化湖泊浮游植物分布特征为北湖区隐藻门、蓝藻门和甲藻门占优势;南湖区中绿藻门丰度最高。  相似文献   

14.
Organism size is one of the key determinants of community structure, and its relationship with abundance can describe how biomass is partitioned among the biota within an ecosystem. An outdoor freshwater mesocosm experiment was used to determine how warming of~4 °C would affect the size, biomass and taxonomic structure of planktonic communities. Warming increased the steepness of the community size spectrum by increasing the prevalence of small organisms, primarily within the phytoplankton assemblage and it also reduced the mean and maximum size of phytoplankton by approximately one order of magnitude. The observed shifts in phytoplankton size structure were reflected in changes in phytoplankton community composition, though zooplankton taxonomic composition was unaffected by warming. Furthermore, warming reduced community biomass and total phytoplankton biomass, although zooplankton biomass was unaffected. This resulted in an increase in the zooplankton to phytoplankton biomass ratio in the warmed mesocosms, which could be explained by faster turnover within the phytoplankton assemblages. Overall, warming shifted the distribution of phytoplankton size towards smaller individuals with rapid turnover and low standing biomass, resulting in a reorganization of the biomass structure of the food webs. These results indicate future environmental warming may have profound effects on the structure and functioning of aquatic communities and ecosystems.  相似文献   

15.
The qualitative and quantitative composition of phytoplankton in the area of a sea farm in Vostok Bay (Sea of Japan) was investigated from July 2001 to May 2002. The overall numbers of phytoplankton were 0.008 to 5.3 million cells/liter, and the biomass was 0.02 to 20.5 g/m3. The maximum density and biomass of phytoplankton were observed in summer, fall, and winter. Ten species known to be toxic were recorded. Of these, Pseudo-nitzschia multiseries (Hasle) Hasle, Alexandrium acatenella (Whedon et Kofoid) Balech, and Chattonella marina (Subrahmanyan) Hara et Chihara were found in Vostok Bay for the first time. For the diatom Skeletonema costatum (Greville) Cleve, which is an indicator of extremely eutrophic waters, the cell density was positively correlated with the area of the culture site.Original Russian Text Copyright © 2005 by Biologiya Morya, Morozova, Orlova.  相似文献   

16.
Community composition, biomass and primary production of phytoplankton were studied in the east- ernmost section of the Westerschelde estuary in 1984. Photosynthetic characteristics were compared with distribution of some dominant phytoplankton species along a salinity gradient from 5 to 22 Spring phytoplankton, with Cyclotella meneghiniana (freshwater) and Skeletonema costatum (marine) as the dominant species grew faster than summer phytoplankton. In summer, biomass achieved its maximum, due to the riverine Scenedesmus species and the marine diatoms Thalassiosira levanderi and Ditylum brightwellii, as dominants. Growth conditions were more favourable to phytoplankton communities above 15%, than below this salinity. The data were compared with previous studies (1972) of species composition in the area.  相似文献   

17.
Phytoplankton species composition, biomass, diversity, nutrients and chlorophyll a were studied at monthly intervals from December 1991 to December 1992 in a selected area of the river Strymon. SRP ranged from 53 to 182 μg−1 l−1 and DIN from 265 to 850 μg−1 I−1. Nutrient values do not indicate strong anthropogenic effects. Chlorophyll α ranged from 1.0 to 35.3 μg−1 I−1 and followed the temporal distribution of total phytoplankton biomass. Phytoplankton biomass exhibited maxima in winter – spring and summer (6.8 g m−3 in December 1991, 4.8 g m−3 in April 1992 and 9.3 g m−3 in August 1992) composed mainly of diatoms, chlorphytes, cyanophytes and dinophytes. Nanoplankton was the most important component of phytoplankton biomass (69.5%) revealing increased values in winter and early spring. Phytoplankton diversity ranged from 0.8 to 3.2. The hydrological conditions in the river Strymon seem to be appropriate for the algae to reproduce themselves in the running water and so, to develop as a true potamoplankton. However, significant populations of phytoplankton must have been carried out from the Kerkini reservoir, situated at the north of the sampling station. The phytoplankton species composition and their periodicity in the river resemble those of typical, large, lowland and nutrient – rich rivers of Europe.  相似文献   

18.
Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%–6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (−8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (−5.0% vs. −9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of −10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (−7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.  相似文献   

19.
Qualitative and quantitative analyses of phytoplankton from the inner part of Thermaikos Gulf were carried out in the period May 1988–April 1989. A total of 154 taxa were identified in the phytoplankton. the monthly values of the phytoplankton biomass ranged between 614 and 6700 mg/m3 (wet weight). The seasonal development of the phytoplankton biomass exhibited three peaks. Diatoms, dinoflagellates and cryptophytes were the most important constituents of the gulf phytoplankton. Throughout the year, five different phytoplankton assemblages were distinguished.  相似文献   

20.
The principal environmental factors influencing the seasonal dynamics of phytoplankton were examined from September 1997 to July 1998 in three stations along a 26-km stretch of the lowland course of River Adige (northeast Italy). Nutrient concentrations did not appear to be limiting for the phytoplankton growth. Annual minimum concentrations of reactive and total phosphorus, and dissolved inorganic nitrogen were 22 μg P l−1, 63 μg P l−1 and 0.9 mg N l−1, respectively. The most critical forcing factors were physical variables, mainly water discharge and other variables related to hydrology, i.e. suspended solids and turbidity, which acted negatively and synchronously by diluting phytoplankton cells and decreasing light availability. Higher algal biomass was recorded in early spring, in conditions of lower flow velocity and increasing water temperature. In late spring and summer, higher water discharge caused a decrease in phytoplankton biomass. Conversely, low algal biomass in late autumn and winter, during low discharge, was mainly related to low water temperatures and shorter photoperiod. Physical constraints had a significant and measurable effect not only on the development of total biomass, but also on the temporal dynamics of the phytoplankton community. Abiotic and biotic variables showed a comparable temporal development in the three sampling stations. The small number of instances of spatial differences in phytoplankton abundance during the period of lower flow velocity were related to the increasing importance of biological processes and accumulation of phytoplankton biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号