首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow derived human mesenchymal stem cells (hMSCs) have attracted great interest from both bench and clinical researchers because of their pluripotency and ease of expansion ex vivo. However, these cells do finally reach a senescent stage and lose their multipotent potential. Proliferation of these cells is limited up to the time of their senescence, which limits their supply, and they may accumulate chromosomal changes through ex vivo culturing. The safe, rapid expansion of hMSCs is critical for their clinical application. Chromosomal aberration is known as one of the hallmarks of human cancer, and therefore it is important to understand the chromosomal stability and variability of ex vivo expanded hMSCs before they are used widely in clinical applications. In this study, we examined the effects of culturing under ambient (20%) or physiologic (5%) O(2) concentrations on the rate of cell proliferation and on the spontaneous transformation of hMSCs in primary culture and after expansion, because it has been reported that culturing under hypoxic conditions accelerates the propagation of hMSCs. Bone marrow samples were collected from 40 patients involved in clinical research. We found that hypoxic conditions promote cell proliferation more favourably than normoxic conditions. Chromosomal aberrations, including structural instability or aneuploidy, were detected in significantly earlier passages under hypoxic conditions than under normoxic culture conditions, suggesting that amplification of hMSCs in a low-oxygen environment facilitated chromosomal instability. Furthermore, smoothed hazard-function modelling of chromosomal aberrations showed increased hazard after the fourth passage under both sets of culture conditions, and showed a tendency to increase the detection rate of primary karyotypic abnormalities among donors aged 60 years and over. In conclusion, we propose that the continuous monitoring of hMSCs will be required before they are used in therapeutic applications in the clinic, especially when cells are cultured under hypoxic conditions.  相似文献   

2.
The fungus Aspergillus nidulans reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP under hypoxic conditions in a mechanism called ammonia fermentation (Takasaki, K. et al.. J. Biol. Chem. 2004, 279, 12414–12420). To elucidate the mechanism, the fungus was cultured under normoxic and hypoxic (ammonia fermenting) conditions, intracellular proteins were resolved by 2‐DE, and 332 protein spots were identified using MALDI MS after tryptic digestion. Alcohol and aldehyde dehydrogenases that play key roles in oxidizing ethanol were produced at the basal level under hypoxic conditions but were obviously provoked by ethanol under normoxic conditions. Enzymes involved in gluconeogenesis, as well as the tricarboxylic and glyoxylate cycles, were downregulated. These results indicate that the mechanism of fungal energy conservation is altered under hypoxic conditions. The results also showed that proteins in the pentose phosphate pathway as well as the metabolism of both nucleotide and thiamine were upregulated under hypoxic conditions. Levels of xanthine and hypoxanthine, deamination products of guanine and adenine were increased in DNA from hypoxic cells, indicating an association between hypoxia and intracellular DNA base damage. This study is the first proteomic comparison of the hypoxic responses of A. nidulans.  相似文献   

3.
AF 2 (2-(2-furyl)-3-(5-nitro-furyl)acrylamide) was toxic to Chinese hamster V 79 cells and normal human fibroblasts in aerobic media. However, the toxicity of the drug was increased many times by hypoxia. Similarly, the frequency of AF 2-induced azaguanine- and ouabain-resistant mutants of V 79 cells was much higher in hypoxia than under aerobic conditions. Both hamster V 79 cells and human fibroblasts metabolized AF 2 and other nitrofurans rapidly only under hypoxic conditions. Human fibroblasts were more sensitive to AF 2 both under aerobic conditions and in hypoxia than were V 79 cells under similar conditions. The Chinese hamster cells consistently gave survival curves with marked shoulders while human cells did not. Aerobic cultures of fibroblasts derived from xeroderma pigmentosum (XP) patients were markedly sensitive to AF 2 while fibroblasts from two ataxia telangeictasia patients had normal sensitivity. Under hypoxic conditions the sensitivity of both types of cells was increased but the XP line remained 5--10-fold more sensitive than normal or ataxia cells. These results suggest that the DNA lesions produced by AF 2 may be regarded as similar to those produced by ultraviolet light, at least in terms of their repairability in human cells.  相似文献   

4.
5.
Summary Obesity, soft tissue wound healing, adipose tissue engineering, lipomas, and other physiological and pathophysiological conditions necessitate a clear understanding of the interactions between adipocytes and endothelial cells. Adipogenesis and angiogenesis are intimately integrated, despite not being in direct apposition with one another. However, underlying mechanisms have not been elucidated. In this study, the interactions of preadipocytes (PAs) and microvascular endothelial cells are investigated under varying defined O2 conditions, using a coculture system. Results clearly demonstrate that endothelial cells release a soluble factor that sustains PAs viability under hypoxic conditions. Vascular endothelial cell growth factor is not the potential soluble factor (data not shown).  相似文献   

6.
Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O(2), bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G(2)/S/M phase cells increased evidently under 8% O(2) condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O(2) condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl(2)) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.  相似文献   

7.
8.
Isolated spermatocytes and spermatids from hamsters contained a large amount of glutathione (GSH) (approximately 40 and 30 nmol GSH/mg protein, respectively), but showed a spontaneous decrease of GSH content during prolonged incubation (t1/2 approximately 35 h). Incubation of the germ cells in the presence of the glutathione biosynthesis inhibitor buthionine sulphoximine (BSO) provided evidence that the cells can perform glutathione synthesis. This synthesis, however, was not sufficient to maintain the GSH content of the isolated cells, or to restore the cellular GSH pool after depletion caused by exposure of the cells to the glutathione S-transferase substrate, diethyl maleate (DEM). Cultured Sertoli cells, containing approximately 10 nmol GSH/mg protein, had a more active BSO-sensitive GSH synthesis system. The Sertoli cells, but also tubule fragments containing Sertoli cells and germ cells, were able to restore their GSH pool after DEM-induced depletion. DEM treatment of the tubule fragments resulted in a 90% decrease of the GSH content of the spermatocytes and spermatids present within the fragments. The GSH levels of the tubule fragments and the enclosed germ cells were restored during a subsequent incubation in the absence of DEM. As indicated above, such a recovery was not observed for isolated spermatocytes and spermatids. The results illustrate the importance of Sertoli cell-germ cell interaction, and point to a role of Sertoli cells in glutathione synthesis by the germ cells.  相似文献   

9.
The rate of biosynthesis of pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) was compared in cells maintained under normoxic or hypoxic conditions. L8 cells (a myoblast cell line) were pulse-labeled with [3H]leucine and incorporation of radioactivity into pyruvate kinase was measured after quantitative affinity separation with anti-pyruvate kinase monoclonal antibody. During chronic hypoxia there is an increased rate of biosynthesis of pyruvate kinase leading to an increase in enzyme content and augmented glycolytic capacity. An inhibitor of the electron transport chain, antimycin A, was used to determine whether changes in pyruvate kinase content occurring during hypoxia are a result of reduction in molecular oxygen directly or an indirect consequence of oxygen depletion. Pyruvate kinase activity increased during chronic antimycin A exposure under normoxic conditions. The increase was quantitatively accounted for by an increase in cellular pyruvate kinase enzyme content. This suggested that decreases in the levels of molecular O2 are not the direct stimulus for the increased content of pyruvate kinase. It is more likely that the increased pyruvate kinase content results from depressed rates of electron transport through the mitochondrial electron transport chain.  相似文献   

10.
The ATM kinase has previously been shown to respond to the DNA damage induced by reoxygenation following hypoxia by initiating a Chk 2-dependent cell cycle arrest in the G(2) phase. Here we show that ATM is both phosphorylated and active during exposure to hypoxia in the absence of DNA damage, detectable by either comet assay or 53BP1 focus formation. Hypoxia-induced activation of ATM correlates with oxygen concentrations low enough to cause a replication arrest and is entirely independent of hypoxia-inducible factor 1 status. In contrast to damage-activated ATM, hypoxia-activated ATM does not form nuclear foci but is instead diffuse throughout the nucleus. The hypoxia-induced activity of both ATM and the related kinase ATR is independent of NBS1 and MRE11, indicating that the MRN complex does not mediate the DNA damage response to hypoxia. However, the mediator MDC1 is required for efficient activation of Kap1 by hypoxia-induced ATM, indicating that similarly to the DNA damage response, there is a requirement for MDC1 to amplify the ATM response to hypoxia. However, under hypoxic conditions, MDC1 does not recruit BRCA1/53BP1 or RNF8 activity. Our findings clearly demonstrate that there are alternate mechanisms for activating ATM that are both stress-specific and independent of the presence of DNA breaks.  相似文献   

11.
Metabolism of palmitate in cultured rat Sertoli cells   总被引:1,自引:0,他引:1  
Isolated rat Sertoli cells were incubated in the presence of [1-14C]palmitate at a cell concentration of 1.54 +/- 0.31 mg protein/flask (n = 7). The oxidation of palmitate was concentration dependent and maximal oxidation was obtained at 0.35 mM-palmitate. At a saturating concentration of palmitate the oxidation was linear for at least 6 h. About 65% of the total amount of palmitate oxidized during 5 h at 0.52 mM-palmitate (109 +/- 44 nmol/flask, n = 5) was recovered as CO2 and the rest as acid-soluble compounds. Almost all radioactive acid-soluble compounds which were secreted by the Sertoli cells were shown to be 3-hydroxybutyrate and acetoacetate. The palmitate recovery in cellular lipids and triacylglycerols was 9.4 +/- 5.1 nmol/flask (n = 5) and 3.5 +/- 2.8 nmol/flask (n = 5) respectively. Addition of glucose had no significant effect on palmitate oxidation but caused a 9-fold increase in esterification of palmitate into triacylglycerols. We conclude that cultured rat Sertoli cells can oxidize palmitate to CO2 and ketone bodies and that fatty acids appear to be a major energy substrate for these cells.  相似文献   

12.
From several studies of hyperthermia there have been reports that hypoxic cells are more sensitive to heat than their oxic counterparts. Experimental techniques in this investigation eliminate the effect of pH, trypsinization and cell attachment, when assaying the effects of hyperthermia on cells. Under hypoxic conditions, HeLa S3 and Chinese hamster cell-lines do not have an increased sensitivity to heat compared with oxic cells. HeLa S3 cells are protected against heat by hypoxia. Light-microscopy indicates the rupture of the plasma membrane, occasional nuclear budding, membrane vesicles and granulation of cell contents after heating at 43 degrees C for 3 hours. Scanning electron micrographs show that cells are more rounded after heat treatment and that there is an accompanying decrease in the number of microvilli, suggesting that the mechanism of cell attachment is affected. Heated cells should be delicately handled and subjected to the minimal trauma so that an accurate comparison of survival can be made.  相似文献   

13.
β-adrenergic neurotransmission is an important factor regulating brain activity such as neuronal and glial survival, plasticity, membrane transport or cellular metabolism. Intracellular β-adrenergic signaling, via a stimulatory G protein (Gs), activates two major down-stream effectors, i.e., adenylyl cyclase (AC) and cAMP-dependent protein kinase A (PKA). The aim of this work was to study the ability of endogenous (adrenaline and noradrenaline) and exogenous (isoprenaline) β-adrenergic receptor agonists to increase cAMP in different types of nerve cells. Moreover, we wanted to precisely identify the receptor isoform involved in the observed phenomenon using selective β1-, β2- β3-adrenoceptor blockers. In an additional study, the negative influence of hypoxia on the AC/cAMP intracellular signaling system was tested. The study was conducted in parallel on rat primary glial (astrocytes) cultures, primary neuronal cultures, C6 glioma cells and human T98G glioma cells. The formation of [3H] cAMP by agonists and antagonists was measured in [3H] adenine prelabeled cells under normoxic and hypoxic conditions. The obtained results revealed that adrenaline, noradrenaline and isoprenaline strongly stimulated cAMP production in all tested cell types (with highest potency in C6 glioma cells). In glial and neuronal cells the adrenaline-evoked cAMP effect was mediated mainly by the β1-adrenoceptor, whereas in tumor cells the effect was probably mediated by all three β-subtype specific drugs. The AC/cAMP intracellular signaling system is affected by hypoxic conditions. Considering both physiological and therapeutic importance of β-family receptors the present work characterized the β-adrenoceptor-mediated cAMP signal transduction pathway in different nerve cells in normoxic and hypoxic conditions. The proposed in vitro model of hypoxic conditions may serve as a good model system to study the biological effects of endogenous catecholamines as well as potential therapeutics targeting adrenergic receptors, which are impaired during ischemia in vivo.  相似文献   

14.
15.
The proliferation of rat heart smooth muscle cells is unaffected by supplementation of the culture medium with ascorbic acid. The presence or absence of the vitamin has a pronounced effect, however, on the amount of alastin which is produced. Scorbutic cultures incorporate significantly more radioactive valine (an amino acid prevalent in elastin) into proteins present in the extracellular matrix than do supplemented controls, while there was no difference between the systems in the incorporation of labelled methionine (absent from elastin). Deficiency of ascorbic acid appears to result in an enhancement of the biosynthesis and extracellular processing of elastin in this culture system.  相似文献   

16.
17.
18.
Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. In this study, we used human bone marrow cells (BMCs) to investigate the role of hypoxic exposure on human osteoclast (OC) formation in the presence of tumor necrosis factor (TNF). Exposing the BMCs to 3%, 5%, or 10% O2 in the presence of receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) generated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells, consistent with OCs. The addition of TNF under hypoxic conditions generated significantly greater numbers of mature OCs with more nuclei than OCs generated under normoxic conditions. Longer initial hypoxic exposure increased the number of OC precursor cells and facilitated the differentiation of OC precursor cells into multinucleated OCs. Quantitative RT-PCR analysis revealed that RANKL and TNFR1 were expressed at higher levels in non-OC cells from BMCs under hypoxic conditions than under normoxic conditions. Furthermore, to confirm the involvement of TNF-induced signaling, we examined the effects of blocking antibodies against TNFR1 and TNFR2 on OC formation under hypoxic conditions. The TNFR1 antibody was observed to significantly suppress OC formation. These results suggest that hypoxic exposure plays an important role in TNF-induced osteoclastogenesis from human BMCs.  相似文献   

19.
1. The capacity of cultured Sertoli cells to synthesize long-chain polyunsatured fatty acids (PUFA) from the essential fatty acid (EFA) precursors 18:2 n-6 and 18:3 n-3 was tested, and the concentrations of each EFA required to obtain maximal incorporation into membrane lipids were determined. 2. The two EFA were added to the culture medium as free fatty acids complexed to albumin in a molar ratio of 12:1. 3. When the substrates were added individually, the maximal levels of biosynthesis were obtained with 0.7 micrograms/ml of 18:2 n-6 and 2 micrograms/ml of 18:3 n-3. 4. When the two EFA were added together, clear alterations in the behavior of the desaturases with regard to the n-6 and n-3 fatty acids were observed. 5. It was found that a concentration of 0.35 micrograms/ml of each EFA represented the "ideal" required level in order to ensure optimal incorporation of 22-carbon PUFA into the membrane lipids. 6. These results provide the first data on the definition of EFA requirements for Sertoli cells in culture.  相似文献   

20.
Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria, adapted to oxygen limitation, were cultivated on chlorobenzene and its metabolites 2-chloro-cis,cis-muconate and acetate/succinate under hypoxic and denitrifying conditions. Highly sensitive approaches were used to maintain defined low oxygen partial pressures in an oxygen-re-supplying headspace. With low amounts of oxygen available all cultures converted chlorobenzene, though the pure strains accumulated 3-chlorocatechol and 2-chloro-cis,cis-muconate as intermediates. Under strictly anoxic conditions no chlorobenzene transformation was observed, while 2-chloro-cis,cis-muconate, the fission product of oxidative ring cleavage, was readily degraded by the investigated chlorobenzene-degrading cultures at the expense of nitrate as terminal electron acceptor. Hence, we conclude that oxygen is an obligatory reactant for initial activation of chlorobenzene and fission of the aromatic ring, but it can be partially replaced by nitrate in respiration. The tendency to denitrify in the presence of oxygen during growth on chlorobenzene appeared to depend on the oxygen availability and the efficiency to metabolize chlorobenzene under oxygen limitation, which is largely regulated by the activity of the intradiol ring fission dioxygenase. Permanent cultivation of a groundwater consortium under reduced oxygen levels resulted in enrichment of a community almost exclusively composed of members of the β-Proteobacteria and Bacteroidetes. Thus, it is deduced that these strains can still maintain high activities of oxygen-requiring enzymes that allow for efficient CB transformation under hypoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号