首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27 % total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160 %. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD)?kg?1 inoculum day?1 (5.2?±?0.1 and 5.8?±?0.0 g volatile solids (VS)?kg?1 inoculum day?1) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1?±?17.2 and 143.2?±?11.7 normalized liters (NL)?CH4?kg?1 VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg?1 inoculum day?1. Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4?±?0.5 and 60.5?±?5.7 % at OLR 7.0 and 8.0 g TCOD kg?1 inoculum day?1, respectively.  相似文献   

2.
The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m?1, pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m?1, pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m?1, pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m?1, pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg?1 dry soil day?1, respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg?1 dry soil day?1, respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.  相似文献   

3.
Indigenous broadleaf plantations are increasingly developing as a prospective silvicultural management approach for substituting in place of large pure conifer plantations in subtropical China. However, little information is known about the effects of tree species conversion on soil-atmosphere greenhouse gas (GHG) exchanges. Four adjacent monospecific plantations were selected in subtropical China to examine the effects of tree species on soil-atmosphere exchanges of N2O, CH4 and CO2. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM) and Mytilaria laosensis (ML). We found that mean soil N2O and CO2 emissions in the PM plantation were 4.34 μg N m?2?h?1 and 43.25 mg C m?2?h?1, respectively, lower than those in the broadleaf plantations (>5.25 μg N m?2?h?1 and >56.38 mg C m?2?h?1). The PM plantation soil had higher mean CH4 uptake (39.03 μg C m?2?h?1) than the broadleaf plantation soils (<32.67 μg C m?2?h?1). Variations in soil N2O emissions among tree species could be primarily explained by the differences in litter C:N ratio and soil total N stock. Differences in soil CH4 uptake among tree species could be mostly attributed to the differences in mean soil CO2 flux and water filled pore space (WFPS). Litter C:N ratio could largely account for variations in soil CO2 emissions among tree species. This study confirms that there is no GHG benefit of converting PM plantation to broadleaf plantations in subtropical China. Therefore, the future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on soil-atmosphere GHG exchanges.  相似文献   

4.
An experimental study was carried out to compare the performance of selected anaerobic high rate reactors operated simultaneously at 37?°C. The three reactors, namely upflow anaerobic sludge bed reactor (UASB), hybrid of UASB reactor and anaerobic filter (anaerobic hybrid reactor – AHR) and anaerobic baffled reactor (ABR), were inoculated with the anaerobic digested sludge from municipal wastewater treatment plant and tested with synthetic wastewater. This wastewater contained sodium acetate and glucose with balanced nutrients and trace elements (COD 6000?mg?·?l?1). Organic loading rate (B v ) was increased gradually from an initial 0.5?kg?·?m?3?·?d?1 to 15?kg?·?m?3?·?d?1 in all the reactors. From the comparison of the reactors' performance, the lowest biomass wash-out resulted from ABR. In the UASB, significant biomass wash-out was observed at the B v 6?kg?·?m?3?·?d?1, and in the AHR at the B v 12?kg?·?m?3?·?d?1. The demand of sodium bicarbonate for pH maintenance in ABR was two times higher as for UASB and AHR. The efficiency of COD removal was comparable for all three reactors – 80–90%. A faster biomass granulation was observed in the ABR than in the other two reactors. This fact is explained by the kinetic selection of filamentous bacteria of the Methanotrix sp. under a high (over 1.5?g?·?l?1) acetate concentration.  相似文献   

5.

Aims and methods

To evaluate the seasonal and spatial variations of methane (CH4) emissions and understand the controlling factors, we measured CH4 fluxes and their environmental variables for the first time by a static chamber technique in high Suaeda salsa marsh (HSM), middle S. salsa marsh (MSM), low S. salsa marsh (LSM) and bare flat (BF) in the northern Yellow River estuary throughout a year.

Results

CH4 emissions from coastal marsh varied throughout different times of the day and significant differences were observed in some sampling periods (p?<?0.05). Over all sampling periods, CH4 fluxes averaged between ?0.392 mgCH4 m?2?h?1 and 0.495 mgCH4 m?2?h?1, and emissions occurred during spring (0.008 mgCH4 m?2?h?1) and autumn (0.068 mgCH4 m?2?h?1) while sinks were observed during summer (?0.110 mgCH4 m?2?h?1) and winter (?0.009 mgCH4 m?2?h?1). CH4 fluxes from the four marshes were not significantly different (p?>?0.05), and emissions occurred in LSM (0.026 mgCH4 m?2?h?1) and BF (0.055 mgCH4 m?2?h?1) while sinks were observed in HSM (?0.035 mgCH4 m?2?h?1) and MSM (?0.022 mgCH4 m?2?h?1). The annual average CH4 flux from the intertidal zone was 0.002 mgCH4 m?2?h?1, indicating that coastal marsh acted as a weak CH4 source. Temporal variations of CH4 emission were related to the interactions of abiotic factors (temperatures, soil moisture and salinity) and the variations of limited C and mineral N in sediments, while spatial variations were mainly affected by the vegetation composition at spatial scale.

Conclusions

This study observed a large spatial variation of CH4 fluxes across the coastal marsh of the Yellow River estuary (CV?=?7856.25 %), suggesting that the need to increase the spatial replicates at fine scales before the regional CH4 budget was evaluated precisely. With increasing exogenous nitrogen loading to the Yellow River estuary, the magnitude of CH4 emission might be enhanced, which should also be paid more attentions as the annual CH4 inventory was assessed accurately.  相似文献   

6.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

7.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

8.
A central composite design circumscribed method was used to define the experimental conditions that improve the methane production rate (kCH4, liters of methane per kilogram of VS of waste added and per day) and the cumulative methane production (cMP, liters of methane per kilogram of VS of waste added) of the co-digestion of sewage sludge (SS) with crude glycerol (cGly) and waste frying oil (WFO). Three factors were selected, i.e., SS concentration, global co-substrate concentration, and mass fraction of cGly (xcGly) in a mixture of cGly and WFO (in chemical oxygen demand, COD). SS digestion without co-substrate reached a cMP of (294?±?6) L·kg?1 and a kCH4 of (64?±?1) L·kg?1·d?1, at standard temperature and pressure conditions and expressed relatively to the initial volatile solids. After statistical analysis, SS and co-substrate concentrations of 4.6 g·L?1 and 8.8 g·L?1 (in COD), respectively, with xcGly of 0.8, were defined to simultaneously boost cMP (91 % more) and kCH4 (3-fold increase). Application of these conditions would yield 214 MWh more in electricity per 1000 m3 of SS digested.  相似文献   

9.
Global warming is associated with the continued increase in the atmospheric concentrations of greenhouse gases; carbon dioxide, methane (CH4) and nitrous oxide. Wetlands constitute the largest single natural source of atmospheric CH4 in the world contributing between 100 and 231 Tg year?1 to the total budget of 503–610 Tg year?1, approximately 60 % of which is emitted from tropical wetlands. We conducted diffusive CH4 emission measurements using static chambers in river channels, floodplains and lagoons in permanent and seasonal swamps in the Okavango Delta, Botswana. Diffusive CH4 emission rates varied between 0.24 and 293 mg CH4 m?2 h?1, with a mean (±SE) emission of 23.2 ± 2.2 mg CH4 m?2 h?1 or 558 ± 53 mg CH4 m?2 day?1. These emission rates lie within the range reported for other tropical wetlands. The emission rates were significantly higher (P < 0.007) in permanent than in seasonal swamps. River channels exhibited the highest average fluxes at 31.3 ± 5.4 mg CH4 m?2 h?1 than in floodplains (20.4 ± 2.5 mg CH4 m?2 h?1) and lagoons (16.9 ± 2.6 mg CH4 m?2 h?1). Diffusive CH4 emissions in the Delta were probably regulated by temperature since emissions were highest (20–300 mg CH4 m?2 h?1) and lowest (0.2–3.0 mg m?2 h?1) during the warmer-rainy and cooler winter seasons, respectively. Surface water temperatures between December 2010 and January 2012 varied from 15.3 °C in winter to 33 °C in summer. Assuming mean inundation of 9,000 km2, the Delta’s annual diffusive emission was estimated at 1.8 ± 0.2 Tg, accounting for 2.8 ± 0.3 % of the total CH4 emission from global tropical wetlands.  相似文献   

10.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

11.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

12.
Vernal pools are small, seasonal wetlands that are a common landscape feature contributing to biodiversity in northeastern North American forests. Basic information about their biogeochemical functions, such as carbon cycling, is limited. Concentrations of dissolved methane (CH4) and carbon dioxide (CO2) and other water chemistry parameters were monitored weekly at the bottom and surface of four vernal pools in central and eastern Maine, USA, from April to August 2016. The vernal pools were supersaturated with respect to CH4 and CO2 at all sampling dates and locations. Concentrations of dissolved CH4 and CO2 ranged from 0.4 to 210 μmol L?1 and 72–2300 μmol L?1, respectively. Diffusive fluxes of CH4 and CO2 into the atmosphere ranged from 0.2 to 73 mmol m?2 d?1, and 30–590 mmol m?2 d?1, respectively. During the study period, the four vernal pools emitted 0.1–5.8 kg C m?2 and 9.6–120 kg C m?2 as CH4 and CO2, respectively. The production fluxes (production rates normalized to surface area) of CH4 and CO2 ranged from ? 0.02 to 0.66 and 0.40–4.6 g C m?2 d?1, respectively, and increased significantly over the season. Methane concentrations were best predicted by alkalinity, ortho-phosphate and depth, while CO2 concentrations were best predicted with only alkalinity. Alkalinity as a predictor variable highlights the importance of anaerobic respiration in production of both gases. Our study pools had large concentrations and effluxes of CH4 and CO2 compared to permanently inundated wetlands, indicating vernal pools are metabolically active sites and may be important contributors to the global carbon budget.  相似文献   

13.
Dissolved CH4 concentrations in the Belgian coastal zone (North Sea) ranged between 670 nmol l?1 nearshore and 4 nmol l?1 offshore. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In nearshore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM-rich sediments. In offshore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the chlorophyll-a spring peak, suggesting that in these OM-poor sediments, methanogenesis depended on freshly produced OM delivery. This does not exclude the possibility that some CH4 might originate from dimethylsulfide (DMS) or dimethylsulfoniopropionate (DMSP) or methylphosphonate transformations in the most offshore stations. Yet, the average seasonal CH4 cycle was unrelated to those of DMS(P), very abundant during the Phaeocystis bloom. The annual average CH4 emission was 126 mmol m?2 y?1 in the most nearshore stations (~4 km from the coast) and 28 mmol m?2 y?1 in the most offshore stations (~23 km from the coast), 1260–280 times higher than the open ocean average value (0.1 mmol m?2 y?1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area.  相似文献   

14.
Methane flux from rainforest soils in northeast Queensland, Australia, was investigated using a combination of laboratory, field and simulation modelling. In aerobic laboratory incubations, CH4 uptake in the top 0.1 m of the soil (?2.5 to ?7.3 μg CH4 kg?1 SDW day?1) is approximately one order of magnitude higher than CH4 production under anaerobic conditions. The highest CH4 uptake, as well as potential CH4 production is found in the uppermost C rich soil layers. Detailed measurements from three contrasting rainforest sites identified the soils to be functioning as sinks for atmospheric CH4. Fifteen months continuous measurement at one of the lowland rainforest sites showed that the seasonality of CH4 uptake was mainly driven by changes in soil moisture rather than by temperature changes. Maximum CH4 uptake (109 μg CH4 m?2 h?1) was observed during dry season conditions, whereas during the wet season, CH4 uptake decreased significantly to near zero. Based on our laboratory experiments and on published literature we developed a semi-empirical CH4 module for the biogeochemical model ForestDNDCtropica. Tests at several sites showed the robustness of our modelling approach with mean simulated values within 12% of observed values. To estimate regional CH4 uptake by rainforest soils in the region of the ‘Wet Tropics’, Queensland, Australia, we linked CH4 uptake and production algorithms to a regional GIS database. We estimated that the lowland and montane rainforest soils in northeast Queensland, Australia, were a net sink for CH4 with a mean uptake rate of ?2.89 kg CH4 ha?1 year?1 during July 1996 to June 1997 period.  相似文献   

15.
The photosynthetic characteristics through P-E curves and the effect of UV radiation on photosynthesis (measured as rapid adjustment of photochemistry, F v/F m) and DNA damage (as formation of CPDs) were studied in field specimens of green, red and brown algae collected from the eulittoral and sublittoral zone of Fildes Peninsula (King George Island, Antarctic). The content of phenolic compounds (phlorotannins) and the antioxidant activity were also studied in seven brown algae from 0 to 40 m depth. The results indicated that photosynthetic efficiency (α) was high and did not vary between different species and depths, while irradiances for saturation (E k) averaged 55 μmol m?2 s?1 in subtidal and 120 μmol m?2 s?1 in eulittoral species. The studied species exhibited notable short-term UV tolerance along the vertical zonation. In intertidal and shallow water species, decreases in F v/F m by UV radiation were between 0 and 18 %, while in sublittoral algae, decreases in F v/F m varied between 3 and 35 % relative to PAR treatment. In all species, recovery was high averaging 84–100 %. The formation of CPDs increased (15–150 %) under UV exposure, with the highest DNA damage found in some subtidal species. Phlorotannin content varied between 29 mg g?1 DW in Ascoseira mirabilis from 8 m depth and 156 mg g?1 DW in Desmarestia menziesii from 17 m depth. In general, phlorotannin concentrations were constitutively high in deeper sublittoral brown algae, which were correlated with higher antioxidant activities of algal extracts and low decreases in photosynthesis. UV radiation caused a strong decrease in phlorotannin content in the deep-water Himantothallus grandifolius, whereas in D. menziesii and Desmarestia anceps, induction of the synthesis of phlorotannins by UV radiation was observed. The antioxidant activity was in general less affected by UV radiation.  相似文献   

16.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

17.
The critical shear stress of resuspension and rates of erosion for cohesive and loosely structured sediments must be obtained by direct measurements since there is no theoretical calculation. An in situ experiment on sediment resuspension was performed in a shallow lake (Langer See, NE Germany; area = 1.27 km2, zmax = 3.8 m) in summer 2006 using a hydrodynamically calibrated erosion chamber (Ø 20 cm). Shear velocity (u*) was incrementally increased in 11 steps (0–2.19 cm s?1) to initiate resuspension events. Entrainment rates (E) of suspended particulate matter (ESPM), total P (ETP), chlorophyll a (EChl a), and soluble reactive P (ESRP) were determined by mass balance. Two subsequent critical u* (0.53 cm s?1 and 1.48 cm s?1) support the ‘two-layered bed’ model of a fluffy surface aggregate layer (freshly deposited phytodetritus prone to resuspension) and an underlying more consolidated biostabilised layer. Patterns in ESPM (2–106 g m?2 h?1), ETP (11–532 mg m?2 h?1), and EChl a (3–24 μg m?2 h?1) revealed a sediment surface maximum of TP and Chl a and their theoretical vertical logarithmic decrease within 4 mm sediment depth, the maximum thickness of sediment layer entrained. The advective ESRP flux (17 mg m?2 h?1) was 43 times higher than the diffusive SRP flux (0.4 mg m?2 h?1). The TP and Chl a micro-profiles suggest that cohesive sediment bed formation is a function of both settling (fluff) and consolidation (biostabilisation). Thus, sediment microstructure and resuspension behavior depend on each other.  相似文献   

18.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

19.
Respiration and calcification rate were estimated to quantify the effect of Zhikong scallop Chlamys farreri on marine CO2 system in Sanggou Bay, China. The C. farreri population in Sanggou Bay sequestered 78.06?±?5.76 g C m?2 y?1 for shell formation, while the CO2 fluxes due to calcification and respiration were 53.95?±?3.98 and 71.69?±?6.51 g C m?2 y?1, respectively. In order to eliminate the additional CO2 released from calcification and respiration process of C. farreri, Gracilaria lemaneiformis were introduced into the integrated system and its role was validated by in situ mesocosm methods. Eight mesocosms (1,000 L) were deployed over 42-h period and consisted of four treatments: seaweed-only, scallop-only (SP), seaweed integrated with scallop (SS), and control (C). The aqueous CO2 concentration and partial pressure of CO2 in SP treatments were significantly higher than the other three treatments (p?<?0.01), while there were no difference between SS treatments and C treatments (p?>?0.05). Furthermore, compared with the SP treatments, the presence of the G. lemaneiformis can keep the seawater pH stable. These findings suggest that seaweed and shellfish integrated aquaculture practice cannot only reduce dissolved inorganic carbon but also can alleviate ocean acidification.  相似文献   

20.
Alpine lakes receive a large fraction of their nutrients from atmospheric sources and are consequently sensitive to variations in both the amount and chemistry of atmospheric deposition. In this study we explored the spatial changes in lake water chemistry and biology along a gradient of dust deposition in the Wind River Range, Wyoming. Regional differences were explored using the variation in bulk deposition, lake water, sediment, and bedrock geochemistry and catchment characteristics. Dust deposition rates in the Southwestern region averaged 3.34 g m?2 year?1, approximately three times higher than deposition rates in the Northwestern region (average 1.06 g m?2 year?1). Dust-P deposition rates ranged from 87 µg P m2 day?1 in the Northwestern region to 276 µg P m2 day?1 in the Southwestern region. Subalpine and alpine lakes in the Southwestern region had greater total phosphorus (TP) concentrations (5–13 µg L?1) and greater sediment phosphorus (SP) concentrations (2–5 mg g?1) than similar lakes elsewhere in the region (1–8 µg L?1 TP, 0.5–2 mg g?1 SP). Lake phosphorus concentrations were related to dissolved organic carbon (DOC) across vegetation gradients, but related to the percent of bare rock, catchment area to lake area, and catchment steepness across dust deposition gradients. Modern phytoplankton and zooplankton biomasses were two orders of magnitude greater in the Southwest than in the Northwest, and alpine lakes in the Southwest had a unique diatom species assemblage with relatively higher concentrations of Asterionella formosa, Pseudostaurosira pseudoconstruens, and Pseudostaurosira brevistriata. These results suggests that catchment controls on P export to lakes (i.e. DOC) are overridden in dominantly bare rock basins where poor soils cannot effectively retain dust deposited P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号