首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Removing plant residue from soil has been shown to have an adverse effect on soil health; however, the addition of cover crops may help mitigate these impacts. This study was conducted to assess the effect of incorporating cover crops on soil health with varying removal rates of corn (Zea mays L.) residues. Corn was grown in rotation with soybean (Glycine max) in a randomized, split-block design with three different corn residue removal levels (37, 55, and 98% of total above-ground C) as whole plot treatments and the presence or absence of cover crops as the split plot treatment. Soil samples were collected from both crop phases following 7 years of cover crop treatment and subjected to a suite of soil health measurements. In the soybean phase immediately following corn residue removal, there were significant (P?=?0.025) increases in the erodible fraction (EF) of soil aggregates and reductions in the stable, larger aggregate fractions. Cover crops mitigated these changes in aggregate distributions in the highest residue removal treatment. Residue removal resulted in a significant decrease in fPOM (P?=?0.03) while the addition of cover crops increased fPOM levels during the soybean phase (P?=?0.002). Residue removal significantly (P?=?0.017) decreased soil microbial enzyme activities while cover crops restored activities in the highest residue removal treatment (P?=?0.037). We also found higher fungal:bacterial ratios with cover cropping compared to no cover crops. We conclude that cover cropping continued over multiple years can partially mitigate negative effects of crop residue removal on soil health thus limiting soil erosion and maintaining nutrient cycling activities in the vulnerable period following residue removal.  相似文献   

2.
Fertilizer Impacts on Cadmium Availability in Agricultural Soils and Crops   总被引:2,自引:0,他引:2  
Ingestion in food is a major pathway of cadmium (Cd) exposure for humans. It is therefore desirable to ensure that Cd concentrations in crops that enter the human food chain do not increase to levels that may lead to health risks. Phosphorus fertilizers contain Cd as a contaminant at levels varying from trace amounts to as much as 300 mg Cd kg–1 of dry product and therefore can be a major source of Cd input to agricultural systems. Fertilization can influence Cd accumulation in crops by direct Cd addition and by indirect effects on soil pH, ionic strength, Zn concentration, rhizosphere chemistry, microbial activity, and plant growth. Cadmium will accumulate in the soils from fertilizer applications if the amount of Cd added in fertilizer is greater than the amount of Cd removal, whether in harvested crop removal or other loss pathways such as leaching, erosion, or bioturbation. Assessment of the impact of fertilizer management practices on the risk of Cd toxicity to the soil ecosystem and the risk of movement of Cd into the human diet must consider both the direct influence of Cd addition as a fertilizer contaminant and the indirect effects of fertilizer application on Cd phytoavailability. Cadmium accumulation in soils and crops can be minimized by adoption of management practices that improve fertilizer-use efficiency while minimizing Cd input.  相似文献   

3.
Near-infrared reflectance spectroscopy (NIRS) has been used extensively in the forage industry for rapid measurement of forage constituents and could be useful for determining quality of biomass feedstocks at the point of delivery. In previous work, we developed an assay that partitions feedstock carbohydrates based on their availability to be converted to fermentable sugars, including non-structural carbohydrates (C N), biochemically available carbohydrates (C B) with an associated first-order availability rate constant (k B), and unavailable carbohydrates (C U ). Additional quality parameters measured included neutral detergent lignin (NDL), total available carbohydrates (C A), and total carbohydrates (C T). We evaluated the variability of biomass quality parameters in a set of corn stover samples and developed calibration equations for determining parameter values using NIRS. Fifty-two corn stover samples harvested in Iowa and Wisconsin in 2005 and 2006 were analyzed using a high-throughput assay for determining feedstock quality for biochemical conversion. Non-structural carbohydrates ranged from 84 to 155?g?kg?1 dry matter (DM); C B ranged from 354 to 557?g?kg?1 DM; k B ranged from 0.199 to 0.330?h?1; C A ranged from 463 to 699?g?kg?1 DM, and NDL ranged from 32 to 74?g?kg?1 DM. Significant differences (P?<?0.0001) among samples were observed for all parameters, except k B. Near-infrared reflectance spectroscopy calibration equations were developed for C N, C B, C A, C U , C T, and NDL. It was not possible to generate a meaningful calibration equation for k B. There is significant variability within the corn stover population for several key quality-related carbohydrate and lignin constituents which can be predicted reliably using NIRS.  相似文献   

4.
In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). This regional survey summarizes soil GHG emissions from nine maize production systems evaluating different levels of corn stover removal under conventional or conservation tillage management across the US Corn Belt. Cumulative growing season soil emissions of CO2, N2O, and/or CH4 were measured for 2–5 years (2008–2012) at these various sites using a standardized static vented chamber technique as part of the USDA-ARS’s Resilient Economic Agricultural Practices (REAP) regional partnership. Cumulative soil GHG emissions during the growing season varied widely across sites, by management, and by year. Overall, corn stover removal decreased soil total CO2 and N2O emissions by -4 and -7 %, respectively, relative to no removal. No management treatments affected soil CH4 fluxes. When aggregated to total GHG emissions (Mg CO2?eq ha?1) across all sites and years, corn stover removal decreased growing season soil emissions by ?5?±?1 % (mean?±?se) and ranged from -36 % to 54 % (n?=?50). Lower GHG emissions in stover removal treatments were attributed to decreased C and N inputs into soils, as well as possible microclimatic differences associated with changes in soil cover. High levels of spatial and temporal variabilities in direct GHG emissions highlighted the importance of site-specific management and environmental conditions on the dynamics of GHG emissions from agricultural soils.  相似文献   

5.
Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha?1 (80 to 192 bu ac?1). Harvesting an average of 3.9 or 7.2 Mg ha?1 (1.7 or 3.2 tons ac?1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha?1, respectively, with moderate (3.9 Mg ha?1) harvest and by 47, 5.5, and 62 kg ha?1, respectively, with high (7.2 Mg ha?1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest.  相似文献   

6.
Corn stover has great potential as a biomass feedstock due its widespread availability. However, storage characteristics of moist corn stover harvested from single-pass harvesters have not been well quantified. In 2007, whole-plant corn stover at 19.1–40.3% (w.b.) moisture content was stored for 237 days in aerobic piles, one covered and one uncovered, as well an anaerobic silo bag. In 2008, two stover materials—whole plant and cob/husk from 31.7% to 58.1% (w.b.) moisture—were stored for 183 or 204 days in covered and uncovered anaerobic piles, ventilated bags, or anaerobic silo bags. Stover stored in uncovered piles was rehydrated by precipitation, which increased biological activity resulting in dry matter (DM) losses from 8.2% to 39.1% with an average of 21.5%. Stover in covered piles was successfully conserved when the average moisture was less than 25% (w.b.) with DM losses of 3.3%. Stover above 36% (w.b.) moisture and piled under a plastic cover had DM losses from 6.4% to 20.2% with an average of 11.9%. Localized heating occurred in the aerobic piles when moisture was above 45% (w.b.) which lead to temperatures where spontaneous combustion might be a concern (i.e., >70°C). Ambient air blown through a center tube in the ventilated storage bag dried stover near the tube to an average of 24.2% (w.b.), but the remainder of the bag averaged 46.8% (w.b.) at removal. Loss of DM ranged from 7.4% to 22.0% with an average of 11.8% with this storage method. Stover was most successfully conserved in the bags where anaerobic conditions were maintained. Under anaerobic conditions, DM losses ranged from 0.2% to 0.9%. When anaerobic conditions were not maintained in the silo bag, DM losses averaged 6.1% of DM. Anaerobic storage is the best solution for conserving the value of moist corn stover.  相似文献   

7.
Corn stover removal, whether for silage, bedding, or bioenergy production, could have a variety of environmental consequences through its effect on soil processes, particularly N2O production and soil respiration. Because these effects may be episodic in nature, weekly snapshots with static chambers may not provide a complete picture. We adapted commercially available automated soil respiration chambers by incorporating a portable N2O analyzer, allowing us to measure both CO2 and N2O fluxes on an hourly basis through two growing seasons in a corn field in southern Minnesota, from spring 2010 to spring 2012. This site was part of a USDA multilocation research project for five growing seasons, 2008–2012, with three levels of stover removal: zero, full, and intermediate. Initially in spring 2010, two chambers were placed in each of the treatments, but following planting in 2011, the configuration was changed, with four chambers installed on zero removal plots and four on full removal plots. The cumulative data revealed no significant difference in N2O emission as a function of stover removal. CO2 loss from the full removal plots was slightly lower than that from the zero removal plots, but the difference between treatments was much smaller than the amount of C removed in the residue, implying loss of soil carbon from the full removal plots. This is consistent with soil sampling data, which showed that in five of six sampled blocks, the SOC change in the full removal treatments was negative relative to the zero removal plots. We conclude that (a) full stover removal may have little impact on N2O production, and (b) while it will reduce soil CO2 production, the reduction will not be commensurate with the decrease in fresh carbon inputs and, thus, will result in SOC loss.  相似文献   

8.
Low temperature and long residence time pretreatments have been proposed as an alternative to conventional pretreatments within a centralized biorefinery, allowing for a decentralized pretreatment without high energy costs. Ammonia fiber expansion (AFEX?) pretreatment may be uniquely suitable for decentralized pretreatment, and this study considers the possibility of decreasing the temperature in AFEX pretreatment of corn stover. AFEX pretreatment at 40°C and 8?h produced comparable sugar and ethanol yields as conventional AFEX pretreatment at high temperatures and short residence time during subsequent hydrolysis and fermentation. Increasing the ammonia loading at these temperatures tends to increase digestibility, although the moisture content of the reaction has little effect. This study suggests a greater flexibility in AFEX pretreatment conditions than previously thought, allowing for an alternative approach for decentralized facilities if the economic conditions are appropriate.  相似文献   

9.
The growing interest in the use of alternative biomass products for fuel production requires a thorough understanding of the environmental impacts associated with the production of these bioenergy crops. Corn silage is a potential bioenergy feedstock; however, water quality implications for its utilization as a biofeedstock are not understood. The objective of this work was to evaluate water quality impacts associated with corn silage production. The GLEAMS-NAPRA model was used to quantify runoff, percolation, erosion, nitrate-nitrogen, total phosphorus, and pesticide losses attributed to the production of corn silage with and without winter cover crops for two tillage options (conventional tillage and no till) on three Indiana soils. Results revealed that corn silage would generate greater annual surface runoff (1 to 6 mm) and percolation (1 to 20 mm) compared with corn grain and grain plus stover cropping systems. Silage/winter cereal rye cover crop reduced annual surface runoff and percolation and was strongly influenced by increases in evapotranspiration, when compared with continuous silage production. Silage managed with winter cereal rye cover crop influenced water quality by reducing annual nitrate losses with runoff from a low of 14 % to a high of 27 %, with relatively no effect because of tillage management. No-till practice on silage system produced significantly greater phosphorus losses (7.46 to 18.07 kg/ha) in comparison to silage/cereal rye, corn grain, and grain plus stover harvest (p?<?0.05). For every 1,000 l of ethanol produced from corn silage, erosion losses ranged from 0.07 to 0.95 t/ha for conventional tillage practices and from 0.06 to 0.83 t/ha for no-till practices. The feasibility of cropping systems such as corn silage/cereal rye could contribute to large-scale biomass production but should be further investigated.  相似文献   

10.
11.
The impacts of exotic insects and pathogens on forest ecosystems are increasingly recognized, yet the factors influencing the magnitude of effects remain poorly understood. Eastern hemlock (Tsuga canadensis) exerts strong control on nitrogen (N) dynamics, and its loss due to infestation by the hemlock woolly adelgid (Adelges tsugae) is expected to decrease N retention in impacted stands. We evaluated the potential for site variation in N availability to influence the magnitude of effects of hemlock decline on N dynamics in mixed hardwood stands. We measured N pools and fluxes at three elevations (low, mid, high) subjected to increasing atmospheric N deposition where hemlock was declining or absent (as reference), in western North Carolina. Nitrogen pools and fluxes varied substantially with elevation and increasing N availability. Total forest floor and mineral soil N increased (P?<?0.0001, P?=?0.0017, resp.) and forest floor and soil carbon (C) to N ratio decreased with elevation (P?<?0.0001, P?=?0.0123, resp.), suggesting that these high elevation pools are accumulating available N. Contrary to expectations, subsurface leaching of inorganic N was minimal overall (<1?kg?ha?1 9 months?1), and was not higher in stands with hemlock mortality. Mean subsurface flux was 0.16?±?0.04 (SE) (kg?N?ha?1 100?days?1) in reference and 0.17?±?0.05 (kg?N?ha?1 100?days?1) in declining hemlock stands. Moreover, although subsurface N flux increased with N availability in reference stands, there was no relationship between N availability and flux in stands experiencing hemlock decline. Higher foliar N and observed increases in the growth of hardwood species in high elevation stands suggest that hemlock decline has stimulated N uptake and growth by healthy vegetation within this mixed forest, and may contribute to decoupling the relationship between N deposition and ecosystem N flux.  相似文献   

12.
Economic, environmental, and energy independence issues are contributing to rising fossil fuel prices, petroleum supply concerns, and a growing interest in biomass feedstocks as renewable energy sources. Potential feedstocks include perennial grasses, timber, and annual grain crops with our focus being on corn (Zea mays L.) stover. A plot-scale study evaluating stover removal was initiated in 2008 on a South Carolina Coastal Plain Coxville/Rains–Goldsboro–Lynchburg soil association site. In addition to grain and stover yields, carbon balance, greenhouse gas (GHG) emissions and soil quality impact reported elsewhere in this issue, variation in gross energy distribution within various plant fractions — whole plant, below ear shank (bottom), above ear shank (top), cob, as well as leaves and stems of the bottom and top portions (n (part, year)?=?20) was measured with an isoperibol calorimeter. Stalks from above the ear shank were the most energy dense, averaging 18.8 MJ/kg db, and when combined with other plant parts from above the ear shank, the entire top half was more energy dense than the bottom half — 18.4 versus 18.2 MJ/kg db. Gross energy content of the whole plant, including the cob, averaged 18.28?±?0.76 MJ/kg db. Over the 4 years, partial to total removal (i.e., 25 % to 100 %) of above-ground plant biomass could supply between 30 and 168 GJ/ha depending upon annual rainfall. At 168 GJ/ha, the quantity of corn stover biomass (whole plant) available in a 3,254-km2 area (32 km radius) around the study site could potentially support a 500-MW power plant.  相似文献   

13.
Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems.  相似文献   

14.
A biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. We examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO2eq/MJ, respectively, corresponding to a 40 and 74 % reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.  相似文献   

15.
Cost-effective conversion of agricultural residues for renewable energy hinges not only on the material’s quality but also the biorefinery’s ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg?1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation.  相似文献   

16.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

17.
Climate warming in The Arctic may lead to a shift from graminoid to shrub dominance, which may, in turn, alter the structure and function of the ecosystem through shrub influences on the abiotic and/or biotic controls over biogeochemical cycles of carbon (C) and nitrogen (N). In Arctic tundra, near Toolik Lake, Alaska, we quantified net N-mineralization rates under ambient and manipulated snow treatments at three different plant communities that varied in abundance of deciduous shrubs. Our objective was twofold: (1) to test whether the amount of snow that can accumulate around Arctic deciduous shrubs maintains winter soil temperatures high enough to stimulate microbial activity and increase soil N levels (effect of soil microclimate) and (2) to compare the relative effects of snow versus shrubs on N availability via effects on the main drivers of N-mineralization: SOM quality versus microclimate. Winter snow addition had a positive effect on summer, but not winter, N-mineralization rates. Soil organic matter quality had a nine times larger effect on N-mineralization than did soil microclimate in the summer season and only SOM quality had a detectable effect on N-mineralization in the winter. Here we conclude that on a short time scale, shrub interactions with snow may play a role in increasing plant available N, primarily through effects on the summer soil microenvironment. In addition, differences in SOM quality can drive larger differences in net N-mineralization than changes in soil microclimate of the magnitude of what we saw across our three sites.  相似文献   

18.
The rate of total dry matter production of a vegetative crop,under optimal water and nutrient regimens is related to someleaf and canopy photosynthetic characteristics. Three leaf photosyntheticcharacteristics are examined in detail: the light utilizationefficiency at normal ambient CO2 and O2 concentrations, a, therate of light saturated photosynthesis per unit leaf area, Fmax,and the ratio of the rates of photorespira tion and gross photosynthesis.The genetic variability in each of these characteristics issought from published data on a wide range of C3 and C4 planttypes. Within C3 and C4 plant types there are significant genetic differencesonly in Fmax,, although differences exist between C3 and C4plants in the other two characteristics. The effects of thesedifferences on the rate total dry matter production are estimated,and it is concluded that there is no compelling evidence toindicate that improvements in total dry matter production rates,in the U.K., are likely to result from genetic manipulationof these characteristics in the existing range of plant material.  相似文献   

19.
Five nematode species were studied for ability to develop on seven summer cover crops in rotation with tomato transplants grown every third year. Increase of Tylenchorhynchus claytoni, Trichodorus christiei, Pratylenchus brachyurus, Helicotylenchus dihystera, and Xiphinema americanum in newly cleared soil varied with different cover crops. No substantial nematode population increases occurred until the third summer of crop growth. All species except X. americanum and H. dihystera developed best on sudangrass and millet. Crotalaria caused substantial increase of H. dihystera and P. brachyurus but suppressed the other species. Marigold suppressed all species except X. americanum which increased substantially on marigold during the 5th year. Cotton favored rapid increase of T. christiei, and moderate increases of all species except T. claytoni which was suppressed. Beggarweed favored moderate increases of T. christiei and H. dihystera but suppressed the other species. Hairy indigo favored rapid increase of H. dihystera, moderate increases of T. christiei and X. americanum, and suppressed the other species. Number of marketable transplants was reduced after 2 years of sudangrass and cotton; these crops favored increases of T. christiei and T. claytoni. The better cover crops prevented increases of most plant parasitic nematodes in land cropped to tomato, a suitable host.  相似文献   

20.
Invasive nitrogen (N)-fixing plants often fundamentally change key ecosystem functions, particularly N-cycling. However, the consequences of this for litter decomposition, and the mechanisms that underpin ecosystem responses, remain poorly understood. Moreover, few studies have determined how nutrient pools and fluxes shift as invader density increases and whether these effects persist following invader removal, despite the importance of this for understanding the timing and magnitude of invader impacts in ecosystems. We tested how the decomposition rates of four co-occurring grass species were influenced by changes in the density of the globally invasive N-fixing shrub Cytisus scoparius L. (Scotch broom) and whether these effects persisted following invader removal. We used a series of laboratory decomposition assays to disentangle the roles of changes in both litter quality and soil properties associated with increases in broom density. Broom invasion created a soil environment, such as higher rates of net N-mineralisation, which retarded litter decomposition. Litter C/N ratios of co-occurring species decreased as broom density increased, yet this had no effect on decomposition rates. Most relationships between broom density and impacts were nonlinear; this could explain some of the reported variation in invasive species impacts across previous studies that do not account for invader density. Ecosystem properties only partially recovered following invader removal, as broom left a legacy of increased N-availability in both soils and litter. Our findings suggest that invasive N-fixer impacts on soil properties, such as N-availability, were more important than changes in litter quality in altering decomposition rates of co-occurring species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号