首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Anaerobic digestion is a sustainable technology for the treatment of organic waste and production of biogas. Acetoclastic methanogenesis accounts for the majority of methane production in anaerobic digestion. Therefore, sustaining robust acetoclastic methanogens is important for stable process performance. Due to faster growth kinetics at high acetate concentrations, it has been considered that Methanosarcina would be more prevalent than Methanosaeta in unstable anaerobic digestion processes which frequently experience high acetate levels. Methanogen population dynamics were monitored in multiple continuous anaerobic digesters for 500 days. Results from quantitative polymerase chain reaction analysis show that Methanosaeta dominated over Methanosarcina in anaerobic digestion at high acetate levels up to 44 mM, suggesting the potential of Methanosaeta as a robust and efficient acetoclastic candidate for resilient anaerobic methane conversion. Further efforts are needed to identify mechanisms contributing to the unexpected competitiveness of these methanogens at high acetate levels observed in this study.  相似文献   

2.
Taking into account isotope 13C value a mathematical model was developed to describe the dynamics of methanogenic population during mesophilic anaerobic digestion of putrescible solid waste and waste imitating Chinese municipal solid waste. Three groups of methanogens were considered in the model including unified hydrogenotrophic methanogens and two aceticlastic methanogens Methanosaeta sp. and Methanosarcina sp. It was assumed that Methanosaeta sp. and Methanosarcina sp. are inhibited by high volatile fatty acids concentration. The total organic and inorganic carbon concentrations, methane production, methane and carbon dioxide partial pressures as well as the isotope 13C incorporation in PSW and CMSW were used for the model calibration and validation. The model showed that in spite of the high initial biomass concentration of Methanosaeta sp. Methanosarcina sp. became the dominant aceticlastic methanogens in the system. This prediction was confirmed by FISH. It is concluded that Methanosarcina sp. forming multicellular aggregates may resist to inhibition by volatile fatty acids (VFAs) because a slow diffusion rate of the acids limits the VFA concentrations inside the Methanosarcina sp. aggregates.  相似文献   

3.
The presence of methanogens of the genera Methanosarcina and Methanosaeta, and the family Methanomicrobiaceae, and the absence of the family Methanobacteriaceae were inferred from the analysis of lipid component parts in three kinds of sludge from two anaerobic digestors by comparison with the distribution of the lipid component parts among 31 species of methanogens previously reported.  相似文献   

4.
《Process Biochemistry》2014,49(2):301-308
Food waste leachate (FWL) from the food waste recycling facilities in Korea is a serious environmental problem. Much research was done on anaerobic digestion of FWL in a lab-scale; however, there is little information on a large scale anaerobic digestion system (ADS). In this study, a two-phase ADS in a pilot scale was operated using FWL and the ADS performance and microbial structure dynamics using pyrosequencing were investigated. The ADS was operated for 136 days using FWL containing a high concentration of volatile fatty acid (12,435 ± 2203 mg/L), exhibiting volatile acid (VS) removal efficiency of 74–89% and CH4 yield of 0.39–0.85 Nm3/kg of reduced VS. The microbial structure at 76, 101, and 132 days indicated the methanogen population shift from acetoclastic methanogens (Methanosarcina and Methanosaeta) to hydrogenotrophic methanogens (Methanobacterium and Methanoculleus). The bacterial community also shifted to the taxa syntrophically related with hydrogenotrophic methanogens (Clostridia). The statistical analysis revealed the positive correlation of VS removal efficiency with Methanosarcina, but the negative correlation with Methanobacterium. The results presented here suggest that acetoclastic methanogens and their associated bacteria were more efficient for VS removal in the pilot scale ADS system, providing useful information for FWL treatment in a large scale ADS.  相似文献   

5.
To find links between the biotic characteristics and abiotic process parameters in anaerobic digestion systems, the microbial communities of nine full‐scale biogas plants in South Tyrol (Italy) and Vorarlberg (Austria) were investigated using molecular techniques and the physical and chemical properties were monitored. DNA from sludge samples was subjected to microarray hybridization with the ANAEROCHIP microarray and results indicated that sludge samples grouped into two main clusters, dominated either by Methanosarcina or by Methanosaeta, both aceticlastic methanogens. Hydrogenotrophic methanogens were hardly detected or if detected, gave low hybridization signals. Results obtained using denaturing gradient gel electrophoresis (DGGE) supported the findings of microarray hybridization. Real‐time PCR targeting Methanosarcina and Methanosaeta was conducted to provide quantitative data on the dominating methanogens. Correlation analysis to determine any links between the microbial communities found by microarray analysis, and the physicochemical parameters investigated was conducted. It was shown that the sludge samples dominated by the genus Methanosarcina were positively correlated with higher concentrations of acetate, whereas sludge samples dominated by representatives of the genus Methanosaeta had lower acetate concentrations. No other correlations between biotic characteristics and abiotic parameters were found. Methanogenic communities in each reactor were highly stable and resilient over the whole year.  相似文献   

6.
Chen  Si  Cheng  Huicai  Liu  Jiang  Hazen  Terry C.  Huang  Vicki  He  Qiang 《Applied microbiology and biotechnology》2017,101(4):1729-1738

Acetoclastic methanogenesis is a key metabolic process in anaerobic digestion, a technology with broad applications in biogas production and waste treatment. Acetoclastic methanogenesis is known to be performed by two archaeal genera, Methanosaeta and Methanosarcina. The conventional model posits that Methanosaeta populations are more competitive at low acetate levels (<1 mM) than Methanosarcina and vice versa at higher acetate concentrations. While this model is supported by an extensive body of studies, reports of inconsistency have grown that Methanosaeta were observed to outnumber Methanosarcina at elevated acetate levels. In this study, monitoring of anaerobic digesters treating animal wastewater unexpectedly identified Methanosaeta as the dominant acetoclastic methanogen population at both low and high acetate levels during organic overloading. The surprising competitiveness of Methanosaeta at elevated acetate was further supported by the enrichment of Methanosaeta with high concentrations of acetate (20 mM). The dominance of Methanosaeta in the methanogen community could be reproduced in anaerobic digesters with the direct addition of acetate to above 20 mM, again supporting the competitiveness of Methanosaeta over Methanosarcina at elevated acetate levels. This study for the first time systematically demonstrated that the dominance of Methanosaeta populations in anaerobic digestion could be linked to the competitiveness of Methanosaeta at elevated acetate concentrations. Given the importance of acetoclastic methanogenesis in biological methane production, findings from this study could have major implications for developing strategies for more effective control of methanogenic treatment processes.

  相似文献   

7.
A dual approach consisting of cultivation and molecular retrieval of partial archaeal 16S rRNA genes was carried out to characterize the diversity and structure of the methanogenic community inhabiting the anoxic bulk soil of flooded rice microcosms. The molecular approach identified four groups of known methanogens. Three environmental sequences clustered with Methanobacterium bryantii and Methanobacterium formicicum, six were closely related but not identical to those of strains of Methanosaeta concilii, two grouped with members of the genus Methanosarcina, and two were related to the methanogenic endosymbiont of Plagiopyla nasuta. The cultivation approach via most-probable-number counts with a subsample of the same soil as an inoculum yielded cell numbers of up to 107 per g of dry soil for the H2-CO2-utilizing methanogens and of up to 106 for the acetate-utilizing methanogens. Strain VeH52, isolated from the terminal positive dilution on H2-CO2, grouped within the phylogenetic radiation characterized by M. bryantii and M. formicicum and the environmental sequences of the Methanobacterium-like group. A consortium of two distinct methanogens grew in the terminal positive culture on acetate. These two organisms showed absolute 16S rRNA gene identities with environmental sequences of the novel Methanosaeta-like group and the Methanobacterium-like group. Methanosarcina spp. were identified only in the less-dilute levels of the same dilution series on acetate. These data correlate well with acetate concentrations of about 11 μM in the pore water of this rice paddy soil. These concentrations are too low for the growth of known Methanosarcina spp. but are at the acetate utilization threshold of Methanosaeta spp. Thus, our data indicated Methanosaeta spp. and Methanobacterium spp. to be the dominant methanogenic groups in the anoxic rice soil, whereas Methanosarcina spp. appeared to be less abundant.  相似文献   

8.
Two highly enriched cultures containing Dehalococcoides spp. were used to study the effect of aceticlastic methanogens on reductive vinyl chloride (VC) dechlorination. In terms of aceticlastic methanogens, one culture was dominated by Methanosaeta, while the other culture was dominated by Methanosarcina, as determined by fluorescence in situ hybridization. Cultures amended with 2-bromoethanesulfonate (BES), an efficient inhibitor of methanogens, exhibited slow VC dechlorination when grown on acetate and VC. Methanogenic cultures dominated by Methanosaeta had no impact on dechlorination rates, compared to BES-amended controls. In contrast, methanogenic cultures dominated by Methanosarcina displayed up to sevenfold-higher rates of VC dechlorination than their BES-amended counterparts. Methanosarcina-dominated cultures converted a higher percentage of [2-14C]acetate to 14CO2 when concomitant VC dechlorination took place, compared to nondechlorinating controls. Respiratory indices increased from 0.12 in nondechlorinating cultures to 0.51 in actively dechlorinating cultures. During VC dechlorination, aqueous hydrogen (H2) concentrations dropped to 0.3 to 0.5 nM. However, upon complete VC consumption, H2 levels increased by a factor of 10 to 100, indicating active hydrogen production from acetate oxidation. This process was thermodynamically favorable by means of the extremely low H2 levels during dechlorination. VC degradation in nonmethanogenic cultures was not inhibited by BES but was limited by the availability of H2 as electron donor, in cultures both with and without BES. These findings all indicate that Methanosarcina (but not Methanosaeta), while cleaving acetate to methane, simultaneously oxidizes acetate to CO2 plus H2, driving hydrogenotrophic dehalorespiration of VC to ethene by Dehalococcoides.  相似文献   

9.
The wastewater produced in the process of canning fruit contains a syrup that consists mainly of sucrose. This syrup wastewater was treated by methane fermentation in an upflow anaerobic sludge blanket reactor. The organic loading rate of syrup wastewater was increased gradually as fermentation progressed. The higher the organic loading rate, the more methane gas evolved until the organic loading rate reached 30.3 kg COD m?3 d?1, at which point methane generation abruptly diminished because the loading rate was too high to stably operate the reactor. The changes in the microbial community, that of both bacteria and archaea in the granules, were analyzed simultaneously using PCR-DGGE during the fermentation process. Methanosaeta spp., which are methanogenic archaea that produce extracellular polymers indispensable for the formation of granules, were dominant when the methane gas vigorously evolved, and the iron-reducing bacterium belonging to genus Geobacter, which outcompetes methanogens, grew proportionally with the deterioration of methane fermentation.  相似文献   

10.
Macrobial colonization of the different support materials used to enhance methane production in anaerobic digestors is rapid and occurs in the first 24 h of sludge incubation. Scanning electron microscopy studies reveal a predominant presence of filamentous methanogenic forms, closely resemblingMethanosaeta (Methanothrix), which are located on the outer layer and in the bacterial framework of the biofilm. These findings are consistent with the results obtained from microbial counts using both the most probable number and epifluorescence microscopic techniques, which show an increase in the numbers of aceticlastic methanogens compared to other microbial groups involved, such as sulphate-reducing bacteria, the numbers of which are similar to those obtained under the initial conditions. Moreover, a sharp increase in the bacterial counts is observed by using the epifluorescence microscopic technique applied to homogenized samples, probably due to the count of bacteria released from the support materials.  相似文献   

11.
In this study, the microbial community succession in a thermophilic methanogenic bioreactor under deteriorative and stable conditions that were induced by acidification and neutralization, respectively, was investigated using PCR-mediated single-strand conformation polymorphism (SSCP) based on the 16S rRNA gene, quantitative PCR, and fluorescence in situ hybridization (FISH). The SSCP analysis indicated that the archaeal community structure was closely correlated with the volatile fatty acid (VFA) concentration, while the bacterial population was impacted by pH. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (i.e., a Methanoculleus sp. and a Methanothermobacter sp.) and one species of aceticlastic methanogen (i.e., a Methanosarcina sp.). The quantitative PCR of the 16S rRNA gene from each methanogen revealed that the Methanoculleus sp. predominated among the methanogens during operation under stable conditions in the absence of VFAs. Accumulation of VFAs induced a dynamic transition of hydrogenotrophic methanogens, and in particular, a drastic change (i.e., an approximately 10,000-fold increase) in the amount of the 16S rRNA gene from the Methanothermobacter sp. The predominance of the one species of hydrogenotrophic methanogen was replaced by that of the other in response to the VFA concentration, suggesting that the dissolved hydrogen concentration played a decisive role in the predominance. The hydrogenotrophic methanogens existed close to bacteria in aggregates, and a transition of the associated bacteria was also observed by FISH analyses. The degradation of acetate accumulated during operation under deteriorative conditions was concomitant with the selective proliferation of the Methanosarcina sp., indicating effective acetate degradation by the aceticlastic methanogen. The simple methanogenic population in the thermophilic anaerobic digester significantly responded to the environmental conditions, especially to the concentration of VFAs.  相似文献   

12.
Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change coupled to methanogenesis from acetate is only − 36 kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing ferredoxin will be discussed in depth. Membrane bound electron transport is connected to energy conservation by proton or sodium ion translocating enzymes (F420H2 dehydrogenase, Rnf complex, Ech hydrogenase, methanophenazine-reducing hydrogenase and heterodisulfide reductase). The resulting electrochemical ion gradient constitutes the driving force for adenosine triphosphate synthesis. Methanogenesis, electron transport, and the structure of key enzymes are discussed in this review leading to a concept of how aceticlastic methanogens make a living. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

13.
Cereal distillers grains, a by-product from bioethanol industry, proved to be a suitable feedstock for biogas production in laboratory scale anaerobic digesters. Five continuously stirred tank reactors were run under constant conditions and monitored for biogas production and composition along with other process parameters. Iron additives for sulfide precipitation significantly improved the process stability and efficiency, whereas aerobic pretreatment of the grains had no effect. The microbial communities in the reactors were investigated for their phylogenetic composition by terminal restriction fragment length polymorphism analysis and sequencing of 16S rRNA genes. The bacterial subcommunities were highly diverse, and their composition did not show any correlation with reactor performance. The dominant phylotypes were affiliated to the Bacteroidetes. The archaeal subcommunities were less diverse and correlated with the reactor performance. The well-performing reactors operated at lower organic loading rates and amended with iron chloride were dominated by aceticlastic methanogens of the genus Methanosaeta. The well-performing reactor operated at a high organic loading rate and supplemented with iron hydroxide was dominated by Methanosarcina ssp. The reactor without iron additives was characterized by propionate and acetate accumulation and high hydrogen sulfide content and was dominated by hydrogenotrophic methanogens of the genus Methanoculleus.  相似文献   

14.
15.
 The influence of four different granulation precursors, syntroph-enriched methanogenic consortia, Methanosaeta-enriched, Methanosarcina-enriched nuclei and acidogenic flocs, on the time course of complex granule development and the lag time for start-up was investigated in four upflow anaerobic sludge-bed and filter reactors. Although the operational conditions allowed the maintenance of the same specific growth rate of biomass in the four reactors, granulation proceeded rapidly with syntroph/methanogenic consortia, Methanosaeta and Methanosarcina nuclei. However, granulation was significantly retarded when acidogenic flocs were used as precursors. The granule mean Sauter diameter increased rapidly in the reactor inoculated with syntroph/methanogenic consortia, Methanosaeta and Methanosarcina nuclei and reached, at the end of the experiment, 3.1, 2.7 and 2.4 mm compared to 1.1 mm in that inoculated with acidogenic flocs. This corresponded to a rate of granule size increase of 31, 21, 18 μm/day in syntroph/methanogenic consortia, Methanosaeta and Methanosarcina nuclei, respectively, compared to 7 μm/day in acidogenic flocs. Biomass specific activities (i.e. acidogenic, syntrophic and methanogenic activities) increased stepwise in all reactors with time, especially in those inoculated with syntroph/methanogenic consortia and Methanosaeta nuclei. From these results it appears that syntrophs and Methanosaeta spp. play an important role in the anaerobic granulation process. Received: 25 January 1996 / Received revision: 3 September 1996 / Accepted: 13 September 1996  相似文献   

16.
Air-side stripping without a prior solid–liquid phase separation step is a feasible and promising process to control ammonia concentration in thermophilic digesters. During the process, part of the anaerobic biomass is exposed to high temperature, high pH and aerobic conditions. However, there are no studies assessing the effects of those harsh conditions on the microbial communities of thermophilic digesters. To fill this knowledge gap, the microbiomes of two thermophilic digesters (55°C), fed with a mixture of pig manure and nitrogen-rich co-substrates, were investigated under different organic loading rates (OLR: 1.1–5.2 g COD l−1 day−1), ammonia concentrations (0.2–1.5 g free ammonia nitrogen l−1) and stripping frequencies (3–5 times per week). The bacterial communities were dominated by Firmicutes and Bacteroidetes phyla, while the predominant methanogens were Methanosarcina sp archaea. Increasing co-substrate fraction, OLR and free ammonia nitrogen (FAN) favoured the presence of genera Ruminiclostridium, Clostridium and Tepidimicrobium and of hydrogenotrophic methanogens, mainly Methanoculleus archaea. The data indicated that the use of air-side stripping did not adversely affect thermophilic microbial communities, but indirectly modulated them by controlling FAN concentrations in the digester. These results demonstrate the viability at microbial community level of air side-stream stripping process as an adequate technology for the ammonia control during anaerobic co-digestion of nitrogen-rich substrates.  相似文献   

17.
This study characterized the microbial community and population dynamics in an anaerobic hybrid reactor (AHR) treating cassava starch wastewater. Methanogens and nonmethanogens were followed during the start-up and operation of the reactor, and linked to operational and performance data. Biomass samples taken from the sludge bed and packed bed zones of the AHR at intervals throughout the operational period were examined by 16S rRNA fluorescence in situ hybridization (FISH). The start-up seed and the reactor biomass were sampled during the feeding of the wastewater with a chemical oxygen demand (COD) value of 8 g L−1 and a hydraulic retention time (HRT) of 8 days. These samples were characterized by the predominance of cells with long-rod morphology similar to Methanosaeta spp. Following a sharp operational change, accomplished by increasing the COD concentration of the organic influent from 8 to 10 g L−1 and reducing the HRT from 8 to 5 days, there was a doubling of the organic loading rate, a reduction of the COD removal efficiency, as well as decreased methane content in the biogas and an accumulation of total volatile acids in the reactor. Moreover, this operational change resulted in a significant population shift from long-rod Methanosaeta-like cells to tetrad-forming Methanosarcina-like cells. The distributions of microbial populations involved in different zones of the AHR were determined. The results showed that nonmethanogens became the predominant population in both sludge and the packed bed zone. However, the percentage of methanogens in the packed bed zone was higher than that in the sludge bed zone. This higher percentage of methanogens was likely caused by the fact that the packed bed zone provided a suitable environmental condition with an appropriate nutrient availability for methanogen growth.  相似文献   

18.
Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with 13C6-glucose and 13C3-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with 13C-glucose and 13C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with 14C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high Km for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5–10 m). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.  相似文献   

19.
Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation.  相似文献   

20.
This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号