首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in species composition between habitat patches (beta diversity) are likely related to a number of factors, including environmental heterogeneity, connectivity, disturbance and productivity. Here, we used data from aquatic environments in five Brazilian regions over two years and two seasons (rainy and dry seasons or high and low water level periods in floodplain lakes) in each year to test hypotheses underlying zooplankton beta diversity variation. The regions present different levels of hydrological connectivity, where three regions present lakes that are permanent and connected with the main river, while the water bodies of the other two regions consist of permanent lakes and temporary ponds, with no hydrological connections between them. We tested for relationships between zooplankton beta diversity and environmental heterogeneity, spatial extent, hydrological connectivity, seasonality, disturbance and productivity. Negative relationships were detected between zooplankton beta diversity and both hydrological connectivity and disturbance (periodic dry-outs). Hydrological connectivity is likely to affect beta diversity by facilitating dispersal between habitats. In addition, the harsh environmental filter imposed by disturbance selected for only a small portion of the species from the regional pool that were able to cope with periodic dry-outs (e.g., those with a high production of resting eggs). In summary, this study suggests that faunal exchange and disturbance play important roles in structuring local zooplankton communities.  相似文献   

2.
Large fluvial lakes are understudied with respect to their underwaterlight climates. Fluvial lakes pose unique challenges for photobiologistsinterested in the interactions amongst light climate, nutrients and microbialcommunity structure and biodiversity. This is because fluvial lakes are typifiedby highly dynamic flow regimes often incorporating different inflows anddischarges each characterized by their own unique physico-chemical composition.These compositional characteristics include the concentrations of chromophoricdissolved organic matter (CDOM), suspended solids, and pigments such aschlorophyll. Together these factors contribute to the distribution andcomposition of the water masses that make up fluvial lakes. These water masses,in turn, flow over lakebeds that are typically complex in their morphometry andfeature extensive macrophyte beds, further enhancing the habitat heterogeneityof these ecosystems. We here report on the spectral attenuation of ultravioletradiation (UVR = 280–400 nm) and photosyntheticallyactive radiation (PAR = 400–700 nm) in the three mainwater masses of Lake Saint-Pierre and evaluate the relative contribution ofCDOM, and particulate organic material to UVR attenuation. We demonstrate thatUVR penetrates 18 to 30% of the water column (1% penetration depth) in the LakeSaint-Pierre ecosystem, and show how the underwater spectral UVR varies withinthe three water masses.  相似文献   

3.
Exchange of phosphorus across the sediment-water interface   总被引:34,自引:21,他引:34  
In this article, principles of phosphorus retention and phosphorus release at the sediment-water interface in lakes are reviewed. New results and hypotheses are discussed in relation to older models of phosphorus exchange between sediments and water. The fractional composition of sedimentary phosphorus is discussed as a tool for interpretation of different retention mechanisms. Special emphasis is given to the impact of biological, particularly microbial, processes on phosphorus exchange across the sediment-water interface and to the significance of biologically induced CaCO3 precipitation to phosphorus retention in calcareous lakes.  相似文献   

4.
It is generally believed that excessive P release from lake sediments, i. e. internal P load, is only a problem in deep lakes with stagnant anaerobic bottom waters. However, substantial amounts of P can also be released from sediments in shallow, well-mixed lakes. The dynamics and magnitude of P release from sediments in these types of lakes are affected primarily by physical factors, such as seasonal variations in water temperature and year-to-year differences in water renewal. These factors, in turn, induce chemical and microbiological processes which regulate the exchange of substances between sediments and water. The fractional distribution of sedimentary P and the chelating capacity of the water are also important factors that can provide insights to the processes involved and their quantitative impact on the P status in shallow, eutrophic lakes.  相似文献   

5.
SUMMARY. The diversity of Eastern Rift Valley alkaline saline lakes is illustrated and their temporal fluctuations in ionic concentration are emphasized.
The standing crop densities of phytoplanktonic blue-green algae of the genus Spirulina and benthic diatoms were measured. Spirulina abundance was measured as dry mass density and the validity of the gravimatric estimates was checked by chlorophyll analysis and microscopic counting. Benthic diatom standing crops were assessed by chlorophyll determinations. Spirulina density is extremely variable in time and may fluctuate over more than an order of magnitude. High density blooms of Spirulina are not a common characteristic feature of these lakes. The causes of changes in Spirulina standing crop and the associated alterations in the structure of the primary producer community are discussed and three qualitative states which may occur are described.
Similar standing crops of benthic diatoms (mean 45 mg m−2 of chlorophyll-α) were found at all lakes wherever the water depth was shallow enough to allow light penetration to the sediment surface.  相似文献   

6.
Temperatures of the water column and upper 5 cm of sediment were monitored over a yearly cycle in two South Carolina lakes. Occasional supportive data were also obtained for several lakes in north central Florida. Plans are given for a new type of sediment-interface sampler that is useful in obtaining detailed temperature or chemical profiles extending from the sediment surface upward. The sampler was used in the investigation to demonstrate the thermal microstratigraphy near the mud surface. The deep-water (16 m) temperature for the larger of the two South Carolina lakes changes seasonally from 10·5°C in February to 18·0°C in July. The smaller, shallower (11 m) lake follows an almost identical seasonal cycle but is always 4·0°C cooler because the larger lake receives a heated effluent that has a long-term effect on hypolimnetic temperatures. In both lakes the uppermost sediments are warmer than the overlying water by an average of 0·1 to 1·0°C during the warming period. Heat accretion near the bottom continues but is slower after stratification, probably due to the relatively low temperature (density) differential between water layers in these warm lakes. Cooling in deep water begins long before breakdown of stratification and is apparently caused by cold density currents from the shallows. The coldest water is located in a thin layer just over the sediment. There is evidence from one of the South Carolina lakes and from the Florida lakes that when the density flows begin they at first flow over a warmer water layer that is more dense due to a high electrolyte content derived from the sediment. There is a slight deep water warming in all of the lakes when stratification breaks down. After destratification, the deep water is cooled by turbulence rather than density flows. The surface sediments at this time are consistently warmer than the hypolimnion and remain so through the cooling period. There is strong evidence from one Florida lake that turbulence mixes the upper 3 cm of sediment during the isothermal period. It is concluded that the sediment-water interface of a warm lake will in general experience greater heat flux than that of a comparable cold lake during the periods of temperature maximum and minimum. Conversely, there is likely to be less heat flux during the warming and cooling periods of warm lakes than of cold lakes. Several expected differences in seasonal patterns of temperature and water movement in the deep water of warm and cold lakes are discussed.  相似文献   

7.
Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality and hypoxia. However, while catchment characteristics act as a ‘filter’ modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last ~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, United Kingdom, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large‐scale stressors do not always initiate coherent regional lake response. Furthermore, a lake's position in its landscape, its connectivity and proximity to point nutrients are important determinants of changes in production and composition of phototrophic assemblages.  相似文献   

8.
This report summarizes the results of summer studies of five soft water lakes, five hard water lakes and six calcareous spring ponds in Wisconsin with respect to the composition of the plankton and aufwuchs communities and the relative role of desmids in those communities. The results are compared with similar data obtained from selected acid bog lakes, alkaline bog lakes and closed bogs. Soft water lakes harbored a greater aufwuchs and plankton desmid diversity than hard water lakes or spring ponds; however, diversity in acid bog lakes was substantially greater than in any other lake type. Utricularia contained the greatest desmid diversity and population density in every lake where it occurred. Staurastrum was the most prevalent genus in the plankton and it was the only one recorded from hard water lakes and calcareous spring ponds. Desmid aufwuchs population densities were roughly comparable in hard water lakes, soft water lakes and acid bogs and the contribution of desmids to the total aufwuchs population was similar for the latter two lake types. However, the plankton of acid bog lakes generally harbored substantially greater desmid populations and these populations contributed much more to the total population than in any other lake type. Aufwuchs data are presented for several hosts and comparisons of population densities are given among hosts within a given lake and between the same host in different lakes of a given type. Data for other algal groups are also included.  相似文献   

9.
The variation in thermal regime and elevation among streams in the Sawtooth Mountains of Idaho, USA was used to test hypotheses about forces structuring larval mayfly assemblages. Sites above and below lakes were included to maximize variation in thermal regime. Forty-five sites were sampled for mayfly larvae and their summer thermal regime was measured. Ordination methods were used to analyze variation in the mayfly assemblages. Principal components analysis showed that mayfly assemblages were strongly and consistently affected by lakes within the stream system, apparently through the effects of lakes on stream temperature. Redundancy analysis explained 51% of the variation in assemblages and identified maximum water temperature and elevation as strong predictors of mayfly assemblages. Elevation influenced assemblage structure independently of summer maximum water temperature, suggesting that air temperature or some other elevation-dependent feature is also important. As predicted by the River Continuum Concept, mayfly diversity increased with increasing maximum daily range in temperature. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: R. Bailey  相似文献   

10.
The factors influencing the density, diversity and species composition of benthic invertebrate communities in 20 lakes in the Canadian arctic and subarctic were determined during 1975, 1976 and 1977. Despite small differences in nutrient and phytoplankton levels among the lakes, there was a strong positive correlation between these parameters and the density and diversity of the communities. Other factors, including maximum summer water temperature, lake depth and surface area had little overall effect on the communities. The densities of 2 ultra-oligotrophic chironomids (Heterotrissocladius oliveri and Micropsectra cf. groenlandica) increased markedly in cold deep lakes. However the abundance of the majority of species, most notably Procladius denticulatus, Tanytarsus sp., and Stictochironomus sp., was not effected by temperature. Other species, (Pontoporeia affinis, Monodiamesa bathyphila and Dicrotendipes nervosus) were probably restricted in their northern distribution by temperature. Surface area usually had little effect on the densities of all common species.  相似文献   

11.
The central provinces of Argentina are characterized by the presence of a high number of shallow lakes, located in endorheic basins, many of which have elevated salinities as well as eutrophic or hypereutrophic condition. The zooplankton of four saline shallow lakes of the province of La Pampa was studied on a monthly basis during a 2‐year period to determine its temporal and spatial variation. The surface of these shallow lakes (<2.5 m depth) varied between 56.8 and 215.9 ha, and some have from 8.4 to 20.8 g · l–1. The more saline lakes have “clear” water and the less saline lakes “turbid” water. Fishes, Jenynsia multidentata , were present in only two lakes during the last two months of the studied period. The zooplankton was composed of 17 taxa of Rotifera, 5 taxa of Cladocera and 4 taxa of Copepoda. The low diversity and the faunistic composition are characteristic of saline environments. Although the studied lakes share 38% of the species, the faunistic similarity was higher between the two least saline lakes. The lowest diversity was found in the two most saline lakes. All four shallow lakes were characterized by their very high zooplankton density, especially in the least saline lakes (<80000 ind · l–1). The abundance is significantly correlated with the water transparency but not with salinity. The zooplankton temporal variation was characterized by the alternation of macro‐ and microzooplankton, probably regulated by competition and intrazooplanktonic predation. In each lake, the spatial abundance distribution of the macro‐ and microzooplankton was homogeneous. It was related to the shallow depht of the lakes and their polymictic condition. The Scheffer model on alternative states in shallow lakes acknowledges that it cannot be applied to saline lakes because Daphnia , the main responsible for the clear water state, is not tolerant to high salinity. Our study shows that the most saline lakes, where the halophylic Daphnia menucoensis is abundant, have also the most clear waters. Another difference that we found with regards to the mentioned model is that, in turbid lakes, it could not have had a top‐down control on macrozooplankton exerted by fishes because in these lakes fishes were practically absent. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The main basins of Lake Winnipeg (52°N 97°E) and Southern Indian Lake (57°N 99°W) had similar phytoplankton cycles during their open water seasons. A brief spring algal maximum was followed by an early summer minimum and, subsequently, an extended autumnal increase when highest biomasses were observed. The maxima were dominated by Melosira spp. The seasonal cycle of Melosira followed closely the seasonal cycle of dissolved Si. These basins exhibited a typical phytoplankton cycle for dimictic lakes even though they did not form a significant thermocline (1°C per meter).The lakes were well-mixed because they were shallow and had large wind fetches. Although thermal stability of the water column was always low, it was positive until maximum heat content was achieved at which time it became nil or negative. These lakes heated and cooled rapidly, and sediment heat storage was a substantial fraction of the total heat budget. Because heating and cooling of water and of sediments were out of phase, heat exchange at the sediment surface could control vertical circulation of interstitial water, nutrient exchange across the sediment-water interface and the seasonality of phytoplankton. Thermal gradients in the sediments during the heating season would be quite pronounced (4°C per meter).It is proposed that positive stability in interstitial waters during the heating season would impose molecular diffusive transport on the sediment column. When the lakes begin to cool, the upper interstitial water column would become thermally unstable and circulation would occur within the sediments. This would result in the observed net flux of dissolved Si, and other nutrients, out of the sediments into the overlying waters. As a consequence, in Lake Winnipeg and Southern Indian Lake the highest phytoplankton biomasses and productivity occurred in the late summer and autumn.  相似文献   

13.
1. Patterns in phytoplankton diversity in lakes and their relationships with environmental gradients have been traditionally based on taxonomic analyses and indices, even though measures of functional diversity (FD) might be expected to be more responsive to such gradients. 2. We assessed the influence of water column physical structure, and other components of the overall environment, on lake phytoplankton diversity using two taxonomically based indices [species richness (S) and the Shannon index (H’)] and a FD index, to determine whether these different measures respond in similar ways to habitat structure. The study encompassed 45 lakes in Eastern Canada, within two lake districts [the Eastern Townships Region (ETR) and Laurentians Region (LR)] that vary in geology and landscape and in lake morphometry and chemistry. 3. Across all lakes, S and H’ were higher in lakes having greater vertical temperature heterogeneity and higher susceptibility to wind mixing. In addition, H’ declined with total phosphorus concentration. FD was only related to maximum lake depth, a variable that integrates many other habitat features. 4. Further insight into the factors affecting phytoplankton diversity was obtained by contrasting the two regions. The taxonomically based diversity measures differed little between the regions, while FD was higher in the ETR where more trait variants were present and more evenly distributed amongst species. Whereas factors driving S did not differ between the regions, we found region‐dependent patterns in the relationships of H’ and FD with maximum lake depth: both indices decreased with maximum depth in the region with lakes more exposed to wind (ETR) but increased in the more hilly landscape where lakes are more sheltered from wind mixing (LR). 5. Our study demonstrates that, for phytoplankton communities, a FD index can show simpler and stronger responses to environmental drivers than a taxonomically based index, while shedding further light onto the functional traits that are important in particular lake categories.  相似文献   

14.
Despite their key role in biogeochemical processes, particularly the methane cycle, archaea are widely underrepresented in molecular surveys because of their lower abundance compared with bacteria and eukaryotes. Here, we use parallel high-resolution small subunit rRNA gene sequencing to explore archaeal diversity in 109 Swedish lakes and correlate archaeal community assembly mechanisms to large-scale latitudinal, climatic (nemoral to arctic) and nutrient (oligotrophic to eutrophic) gradients. Sequencing with universal primers showed the contribution of archaea was on average 0.8% but increased up to 1.5% of the three domains in forest lakes. Archaea-specific sequencing revealed that freshwater archaeal diversity could be partly explained by lake variables associated with nutrient status. Combined with deterministic co-occurrence patterns this finding suggests that ecological drift is overridden by environmental sorting, as well as other deterministic processes such as biogeographic and evolutionary history, leading to lake-specific archaeal biodiversity. Acetoclastic, hydrogenotrophic and methylotrophic methanogens as well as ammonia-oxidizing archaea were frequently detected across the lakes. Archaea-specific sequencing also revealed representatives of Woesearchaeota and other phyla of the DPANN superphylum. This study adds to our understanding of the ecological range of key archaea in freshwaters and links these taxa to hypotheses about processes governing biogeochemical cycles in lakes.  相似文献   

15.
1. Autumn circulation in lakes is currently conceived to occur very rapidly, being controlled mainly by wind‐power dynamics, decreasing irradiance and heat flux. In addition, autumn mixing is usually related to nutrient redistribution in the vertical column, resulting in its overall increase. To test these assumptions, mixing and nutrient dynamics in a Spanish small, wind‐sheltered, mesotrophic, seepage lake were studied daily during autumn circulation. 2. The seasonal erosion of the pycnocline in Las Madres Lake was the outcome of vertical and horizontal exchanges of heat and matter. The overall mixing of the water column lasted 3 months, which was an unexpected period for a rather shallow lake. Two periods of mixing could be envisaged until full circulation was attained. First, a slightly faster period of pycnocline deepening than that predicted by the heat flux and wind stress model of Fisher et al. (1979) occurred for 41 days, mixing most of the water column down to within two meters of the bottom. Then a much slower process took place promoting frequent instability of the bottom layer and resulting in entire mixing in a further 52 days. 3. Vertically, the whole mixing process was a response to weak surface cooling, resulting from the mild air temperatures of the semiarid climate of the area, and weak wind stress, because of low wind fetch and high shelter. Horizontally, a gravity current transporting cold, denser water from western shallower areas of the lake and materials produced by the decomposition of organic matter of littoral origin may produce a bottom layer of increased density, thus impinging on vertical stability. Seepage inputs of water of roughly constant temperature might also have increased bottom density. Bottom density enhancement resulted in a double diffusion process. 4. Only in‐lake nitrogen content increased until full circulation was attained, whereas carbon showed no trend and phosphorus declined. External processes, such as seepage exchange and atmospheric deposition, coupled to internal processes, such as nitrification, oxidised phosphorus precipitation and complexation with organic carbon, might have been responsible for the areal nutrient patterns observed. 5. Our study demonstrates that current models of water column mixing and nutrient redistribution in lakes during autumn circulation must be improved to encompass the effects of external inputs, including horizontal heat and matter exchange.  相似文献   

16.
Human activities and climate change have greatly altered flooding regimes in many of the world's river deltas, but the impact of such changes remains poorly quantified on decadal to multidecadal timescales. This study identified the response of delta lake primary production (measured as the concentration of sedimentary pigments) to variations in flood frequency using spatial surveys and paleolimnological analyses of lakes in the Peace‐Athabasca Delta (PAD), Canada. Surveys of 61 lakes spanning a range of hydrological conditions showed that those lakes that received flood waters less frequently were associated with elevated algal production (surface sedimentary pigments) and, in some lakes, increased growth of emergent macrophytes and epiphytic diatoms. Paleolimnological analyses of five lakes corroborated the contemporary spatial survey results by showing that production of pigments from most algal groups increased during recent periods of lower flood frequency in the 20th century as determined from increases in cellulose‐inferred lake‐water oxygen isotope composition and plant macrofossils, but remained stable in a ‘reference’ basin. In general, past periods of elevated algal production coincided with the increased abundance of submerged macrophytes or emergent vegetation that provide habitat for attached algae. These results suggest that interdecadal declines in river discharge arising from increased aridity, hydrologic regulation or consumptive water use will cause long‐term increases in primary production and alter ecosystem processes (carbon sequestration, biological diversity) in aquatic delta ecosystems similar to the PAD where lakes become nutrient‐rich in the absence of flooding.  相似文献   

17.
Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes'' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive.  相似文献   

18.
Studies on shallow lakes from the north temperate zone show that they alternate between clear and turbid water states in response to control factors. However, the ecology of semi-arid to arid shallow Mediterranean lakes is less explored. Hydrological effects (e.g. water level fluctuations, water residence time) on major ions and nutrient dynamics and processes, and ecology of submerged macrophytes appear to have a crucial role for food webs in shallow Mediterranean lakes. Nutrient control may be of greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes. This will be relevant for the implementation of the European Water Framework Directive, and conservation and management of these ecosystems. Strong trophic cascading effects of fish resulting from dominance of omnivorous and benthivorous fish species, whose diversity is usually high, together with frequent spawning and absence of efficient piscivores, seem to be the reason for the lack of large-bodied grazers that could control phytoplankton. However, such effects may vary within the region depending on fish distribution and community. These factors need elaboration in order to allow shallow lake ecologists and managers to develop better restoration strategies for eutrophicated shallow Mediterranean lakes. Consequently, modifications for the implementation of the European Water Framework Directive for determining ecological status in shallow Mediterranean lakes appear to be necessary. Furthermore, the implications of climate warming may be even more challenging than in high latitude lakes since shallow lakes in the Mediterranean region are among the most sensitive to extreme climate changes. There is an urgent need for data on the ecology of shallow lakes in the region. An appeal is made for international cooperation, development of large-scale research and information exchange to facilitate this and a web-based discussion list has been implemented.  相似文献   

19.
Understanding the various processes contributing to community assembly is among the central aims of ecology. As a means of exploring this topic we quantified the relative influences of habitat filtering and competition in establishing patterns of community functional trait diversity across a landscape of lakes. Habitat filtering has been invoked in shaping community structure when co‐occurring taxa are more similar in their traits than expected by chance (under‐dispersion), and competition has been inferred as a structuring agent when co‐occurring taxa are less similar (over‐dispersion). We tested these hypotheses in crustacean zooplankton communities using a functional trait‐based approach based on five traits defining zooplankton feeding and habitat preferences across 51 lakes spanning several large limnological gradients. In general, zooplankton communities were functionally less diverse than random assemblages created from the same regional species pool. Furthermore, functional diversity was strongly correlated with variables related to lake productivity, suggesting that access to resources was the chief habitat filtering process constraining zooplankton functional diversity. This pattern was driven by the predominantly herbivorous cladocerans as opposed to the more commonly omnivorous, and sometimes carnivorous, copepods.  相似文献   

20.
1. Even though intensive aquaculture production of salmonids in lakes occurs in many locations around the world published studies on the survival and reproductive success of escaped cultured salmonids in freshwater ecosystems are not common. A recent expansion of aquaculture in Chile has led it to become the world's second largest producer of cultured salmonids.
2. We document the recent history of escaped and self-sustaining salmonid populations over a wide spatial scale and a long temporal scale in Chilean Patagonian lakes. Our hypotheses are that salmonid density in lakes will be higher where there is intensive aquaculture, due to greater numbers of potential escapees. Secondly, if non-native salmonids have adverse impacts on native fishes, increases in the abundance of non-native species should be associated with decreases in relative abundance of native species. Finally, if the first two hypotheses are correct we anticipate that diets of salmonids may show evidence of predation on native fishes, diet overlap with native species, and evidence of the influence of feed from aquaculture operations in the diets of salmonids and native fishes.
3. We sampled six lakes with gill nets from 1992 to 2001. Our results show that the relative abundance of free-living salmonids is closely related to the level of fish farming production. Salmonids are the top predators and in lakes with fish farming the main prey item is native fishes. The relative abundance of native fishes has decreased, most likely due to predation by salmonids.
4. Our study contributes to the understanding of the effects of non-native salmonids in oligotrophic lakes, and it provides a starting point to judge the establishment of new fish farming sites in lakes around the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号