首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce a sensing platform for specific detection of DNA based on the formation of gold nanoparticles dimers on a surface. The specific coupling of a second gold nanoparticle to a surface bound nanoparticle by DNA hybridization results in a red shift of the nanoparticle plasmon peak. This shift can be detected as a color change in the darkfield image of the gold nanoparticles. Parallel detection of hundreds of gold nanoparticles with a calibrated true color camera enabled us to detect specific binding of target DNA. This enables a limit of detection below 1.0×10(-14) M without the need for a spectrometer or a scanning stage.  相似文献   

2.
A new protocol for the covalent attachment of oligonucleotides to gold nanoparticles was developed. Base-modified nucleosides with thiooxo groups were acting as molecular surface anchor. Compared to already existing conjugation protocols, the new linker strategy simplifies the synthesis of DNA gold nanoparticle conjugates. The phosphoramidite of 7-deaza-6-thio-2'-deoxyguanosine (6) was used in solid-phase synthesis. Incorporation of the sulfur-containing nucleosides can be performed at any position of an oligonucleotide; even multiple incorporations are feasible, which will increase the binding stability of the corresponding oligonucleotides to the gold nanoparticles. Oligonucleotide strands immobilized at the end of a chain were easily accessible during hybridization leading to DNA gold nanoparticle network formation. On the contrary, oligonucleotides immobilized via a central position could not form a DNA-AuNP network. Melting studies of the DNA gold nanoparticle assemblies revealed sharp melting profiles with a very narrow melting transition.  相似文献   

3.
An understanding of the mechanism of DNA interactions with gold nanoparticles is useful in today medicine applications. We have performed a molecular dynamics simulation on a B-DNA duplex (CCTCAGGCCTCC) in the vicinity of a gold nanoparticle with a truncated octahedron structure composed of 201 gold atoms (diameter ~1.8 nm) to investigate gold nanoparticle (GNP) effects on the stability of DNA. During simulation, the nanoparticle is closed to DNA and phosphate groups direct the particles into the major grooves of the DNA molecule. Because of peeling and untwisting states that are occur at end of DNA, the nucleotide base lies flat on the surface of GNP. The configuration entropy is estimated using the covariance matrix of atom-positional fluctuations for different bases. The results show that when a gold nanoparticle has interaction with DNA, entropy increases. The results of conformational energy and the hydrogen bond numbers for DNA indicated that DNA becomes unstable in the vicinity of a gold nanoparticle. The radial distribution function was calculated for water hydrogen–phosphate oxygen pairs. Almost for all nucleotide, the presence of a nanoparticle around DNA caused water molecules to be released from the DNA duplex and cations were close to the DNA.  相似文献   

4.
5.
A 2D colorimetric DNA sensor is reported based on the 2D aggregation of oligonucleotide-modified gold nanoparticle probes resulting from the molecular hybridization between these latest and their complementary single stranded DNA targets. To increase their mobility the nanoparticles are adsorbed on a fluid lipid bilayer, itself supported on a substrate. The hybridization between the target and the mobile nanoparticle probes creates links between the nanoparticles resulting in the formation of nanoparticle aggregates in the plane of the substrate. This aggregation is detected using a new method based on the selective desorption of non-aggregated nanoparticles. The addition of dextran sulfate induces the substitution of non-aggregated gold nanoparticles while aggregated ones are stable on the substrate. We show that this detection method is highly specific and allows the detection of DNA mismatches and damages.  相似文献   

6.
Zheng, Y., Hunting, D. J., Ayotte, P. and Sanche, L. Radiosensitization of DNA by Gold Nanoparticles Irradiated with High-Energy Electrons. Radiat. Res. 168, 19-27 (2008). Thin films of pGEM-3Zf(-) plasmid DNA were bombarded by 60 keV electrons with and without gold nanoparticles. DNA single- and double-strand breaks (SSBs and DSBs) were measured by agarose gel electrophoresis. From transmission electron micrographs, the gold nanoparticles were found to be closely linked to DNA scaffolds, probably as a result of electrostatic binding. The probabilities for formation of SSBs and DSBs from exposure of 1:1 and 2:1 gold nanoparticle:plasmid mixtures to fast electrons increase by a factor of about 2.5 compared to neat DNA samples. For monolayer DNA adsorbed on a thick gold substrate, the damage increases by an order of magnitude. The results suggest that the enhancement of radiosensitivity is due to the production of additional low-energy secondary electrons caused by the increased absorption of ionizing radiation energy by the metal, in the form of gold nanoparticles or of a thick gold substrate. Since short-range low-energy secondary electrons are produced in large amounts by any type of ionizing radiation, and since on average only one gold nanoparticle per DNA molecule is needed to increase damage considerably, targeting the DNA of cancer cells with gold nanoparticles may offer a novel approach that is generally applicable to radiotherapy treatments.  相似文献   

7.
The effects of small size (~2 nm) gold nanoparticles on the properties of particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules were analyzed. It has been shown that gold nanoparticles induce two different processes. First, they facilitate reorganization of the spatial cholesteric structure of dispersion particles to nematic one. This process is accompanied by the fast decrease in the amplitude of abnormal band in the CD spectrum. Second, they can form ensembles consisting of gold nanoparticles. This process is accompanied by the development and displacement of surface plasmon resonance band in the visible region of the absorption spectrum. The appearance of this band is analyzed by considering two different models of the formation of ensembles consisting of gold nanoparticles. By small-angle X-ray scattering we performed structural analysis of phases formed by DNA cholesteric liquid-crystalline dispersion particles treated with gold nanoparticles. As a result of this study it was possible to prove the formation of linear clusters of gold nanoparticles in the “free space” between the adjacent DNA molecules fixed in the quasinematic layers of liquid-crystalline particles. It has been hypothesized that the formation of linear clusters of gold nanoparticles is most likely related to DNA molecules, ordered in the spatial structure of quasinematic layers, and the toxicity of these nanoparticles in biological systems hypothesized.  相似文献   

8.
A biogenic route was adopted towards the synthesis of gold nanoparticles using the extract of a novel strain, Talaromyces flavus. Reduction of chloroauric acid by the fungal extract resulted in the production of gold nanoparticle, which was further confirmed by the concordant results obtained from UV–visible spectroscopy, energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS) analysis. Morphology and the crystal nature of the synthesized nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and selected area electron diffraction (SAED). A direct correlation was observed between nanoparticle formation and the concentration of reducing agent present in the fungal extract. The time-dependent kinetic study revealed that the bioreduction process follows an autocatalytic reaction. Crystalline, irregular, and mostly flower-shaped gold nanoparticles with a mean hydrodynamic radius of 38.54?±?10.34 nm were obtained. pH played a significant role on production of mono-dispersed nanoparticle. FTIR analysis partially deciphered the involvement of –NH2, ?SH, and –CO groups as the probable molecules in the bio-reduction and stabilization process. Compared to the conventional methods, a time-resolved, green, and economically viable method for floral-shaped nanoparticle synthesis was developed.  相似文献   

9.
This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) and gold nanoparticles immobilised on rhodium-graphite electrodes. Thin films of gold nanoparticles were deposited onto the rhodium-graphite electrodes by drop casting. Cytochrome P450scc was deposited onto both gold nanoparticle modified and bare rhodium-graphite electrodes. Cyclic voltammetry indicated enhanced activity of the enzyme at the gold nanoparticle modified surface. The role of the nanoparticles in mediating electron transfer to the cytochrome P450scc was verified using ac impedance spectroscopy. Equivalent circuit analysis of the impedance spectra was performed and the values of the individual components estimated. On addition of aliquots of cholesterol to the electrolyte bioelectrocatalytic reduction currents were obtained. The sensitivity of the nanoparticle modified biosensor to cholesterol was 0.13 microA microM-1 in a detection range between 10 and 70 microM of cholesterol. This confirms that gold nanoparticles enhance electron transfer to the P450scc when present on the rhodium-graphite electrodes.  相似文献   

10.
Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixel was used as input to a back-propagation network architecture to obtain decision on its membership as nanoparticle. The segmented images were further analysed by k-means clustering to derive geometric properties of individual nanoparticles even from their assembled form. The extracted geometric information was found to be crucial to give a model featuring porous cage like configuration of nanoparticle assembly using which the chaperone like activity of gold nanoparticles can be explained.  相似文献   

11.
An ultrasensitive and highly specific electrochemical aptasensor for detection of thrombin based on gold nanoparticles and thiocyanuric acid is presented. For this proposed aptasensor, aptamerI was immobilized on the magnetic nanoparticles, aptamerII was labeled with gold nanoparticles. The magnetic nanoparticle was used for separation and collection, and gold nanoparticle offered excellent electrochemical signal transduction. Through the specific recognition for thrombin, a sandwich format of magnetic nanoparticle/thrombin/gold nanoparticle was fabricated, and the signal amplification was further implemented by forming network-like thiocyanuric acid/gold nanoparticles. A significant sensitivity enhancement had been obtained, and the detection limit was down to 7.82 aM. The presence of other proteins such as BSA and lysozyme did not affect the detection of thrombin, which indicates a high specificity of thrombin detection could be achieved. This electrochemical aptasensor is expected to have wide applications in protein monitoring and disease diagnosis.  相似文献   

12.
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.  相似文献   

13.
The present study reported proof-of-principle for a genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) through the gold nanoparticle assembly and the ligase reaction. By incorporating the high-fidelity DNA ligase (Tth DNA ligase) into the allele-specific ligation-based gold nanoparticle assembly, this assay provided a convenient yet powerful colorimetric detection that enabled a straightforward single-base discrimination without the need of precise temperature control. Additionally, the ligase reaction can be performed at a relatively high temperature, which offers the benefit for mitigating the non-specific assembly of gold nanoparticles induced by interfering DNA strands. The assay could be implemented via three steps: a hybridization reaction that allowed two gold nanoparticle-tagged probes to hybrid with the target DNA strand, a ligase reaction that generates the ligation between perfectly matched probes while no ligation occurred between mismatched ones and a thermal treatment at a relatively high temperature that discriminate the ligation of probes. When the reaction mixture was heated to denature the formed duplex, the purple color of the perfect-match solution would not revert to red, while the mismatch gave a red color as the assembled gold nanoparticles disparted. The present approach has been demonstrated with the identification of a single-base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild-type and mutant type were successfully scored. To our knowledge, this was the first report concerning SNP detection based on the ligase reaction and the gold nanoparticle assembly. Owing to its ease of operation and high specificity, it was expected that the proposed procedure might hold great promise in practical clinical diagnosis of gene-mutant diseases.  相似文献   

14.
Methods for the generation of nanoparticles encapsulated within cage proteins, such as ferritins, provide particles with low polydispersities due to size constraint by the cage. The proteins can provide enhanced water solubility to enable biological applications and affinity and identification tags to facilitate delivery or the assembly of advanced materials. Many effective methods have been developed, however, they are often impeded by cage protein instability in the presence of reagents or conditions for formation of the nanoparticles. Although the stability of ferritin cage quaternary structure can be enhanced, application of ferritins to materials science remains limited by unpredictable behaviour. Recently, we reported a medium throughput technique to directly detect the ferritin cage state. Herein, we expand this strategy to screen conditions commonly used for the formation of gold nanoparticles. Not only do we report nanoparticle formation conditions that permit ferritin stability, we establish a general screening strategy based on protein cage stability that could be applied to other protein cages or for the generation of other types of particles.  相似文献   

15.
Synthesis of gold nanoparticles was carried out using Pongammia pinnata (pongam) leaf extract and their anticancer and antimycobacterial activities were studied. Gold nanoparticle formation was confirmed by UV–vis, XRD and HR-TEM. The anticancer efficacies of the biogenic gold nanoparticles were analyzed using cytotoxicity, cell morphology analysis, oxidative DNA damage, apoptosis detection and toxicity studies. Biogenic gold nanoparticles inhibited breast cancer cell line (MCF-7) proliferation with an efficacy of IC50 of 1.85 μg/mL. The antimycobacterial potential of the biogenic gold nanoparticles was screened against M. tuberculosis by Luciferase Reporter Phage (LRP) assay. The gold nanoparticles showed inhibition against sensitive M. tuberculosis with the minimum inhibitory concentration (MIC) of 10 μg/mL whereas no inhibition was found against the rifampicin resistant M. tuberculosis.  相似文献   

16.
The hybrid system obtained by conjugating the protein azurin, which is a very stable and well-described protein showing a unique interplay among its electron transfer and optical properties, with 20-nm sized gold nanoparticles has been investigated. Binding of azurin molecules to gold nanoparticle surface results in the red shift of the nanoparticle resonance plasmon band and in the quenching of the azurin single tryptophan fluorescence signal. These findings together with the estimate of the hydrodynamic radius of the composite, obtained by means of Dynamic Light Scattering, are consistent with the formation of a monolayer of protein molecules, with preserved natural folding, on nanoparticle surface. The fluorescence quenching of azurin bound molecules is explained by an energy transfer from protein to metal surface and it is discussed in terms of the involvement of the Az electron transfer route in the interaction of the protein with the nanoparticle.  相似文献   

17.
Studies comparing the effect of adding two different nanoparticle compositions on the plasmonic properties of Au nanovoid arrays were undertaken. Surface-enhanced resonance luminescence and surface-enhanced resonance Raman studies comparing dispersed Ag nanoparticles and Ag nanoparticle aggregates on gold nanovoid arrays were undertaken. These studies showed that using Ag nanoparticle aggregates increased both luminescence and Raman efficiency relative to when dispersed nanoparticles were used; in addition, these studies also showed that adding dispersed Ag nanoparticles supported a more reproducible enhancement in luminescence and Raman across the substrate compared to using Ag nanoparticle aggregates. Finite element analysis simulations indicated that surface plasmon polariton distribution in the sample was affected by the presence of the Ag nanoparticles on the Au nanovoid array.  相似文献   

18.
On Optical Properties of Dilute Colloidal Gold   总被引:1,自引:0,他引:1  
Wavelength-dependent complex effective refractive index of dilute colloidal gold, i.e., spherical gold nanoparticles in water was measured using a reflectometer and a spectrophotometer. The spectral data obtained was used for the calculation of the wavelength-dependent complex permittivity of the gold nanoparticle with the aid of the Maxwell Garnett effective medium model for the colloid. It is shown that the wavelength-dependent complex permittivity of gold nanoparticle is different from the complex permittivity of bulk gold. Furthermore, Smakula’s formula is introduced for the calculation of the relative concentration of gold nanoparticles embedded in liquid using absorption data of the colloid.  相似文献   

19.
Metal nanoparticle constructs of particles of different sizes and materials were prepared, using DNA as connecting element. Therefore, gold and silver nanoparticles were functionalized with complementary DNA sequences that enabled a controlled coupling. The well‐established system based on thiolated DNA was thereby complemented with amino‐functionalized DNA. The realization of specific DNA‐DNA bonds due to hybridization was controlled by the ionic strength. The results demonstrate the potential of the combination of different particle sizes, composition as well as coupling chemistry in order to realize controlled conjugates of nanoparticles. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.

Background

Quantitative analysis of nanoparticle uptake at the cellular level is critical to nanomedicine procedures. In particular, it is required for a realistic evaluation of their effects. Unfortunately, quantitative measurements of nanoparticle uptake still pose a formidable technical challenge. We present here a method to tackle this problem and analyze the number of metal nanoparticles present in different types of cells. The method relies on high-lateral-resolution (better than 30 nm) transmission x-ray microimages with both absorption contrast and phase contrast -- including two-dimensional (2D) projection images and three-dimensional (3D) tomographic reconstructions that directly show the nanoparticles.

Results

Practical tests were successfully conducted on bare and polyethylene glycol (PEG) coated gold nanoparticles obtained by x-ray irradiation. Using two different cell lines, EMT and HeLa, we obtained the number of nanoparticle clusters uptaken by each cell and the cluster size. Furthermore, the analysis revealed interesting differences between 2D and 3D cultured cells as well as between 2D and 3D data for the same 3D specimen.

Conclusions

We demonstrated the feasibility and effectiveness of our method, proving that it is accurate enough to measure the nanoparticle uptake differences between cells as well as the sizes of the formed nanoparticle clusters. The differences between 2D and 3D cultures and 2D and 3D images stress the importance of the 3D analysis which is made possible by our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号