首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chihuahua spruce (Picea chihuahuana Martínez) is a montane subtropical conifer endemic to the Sierra Madre Occidental in northwestern México. Range-wide variation was investigated using maternally inherited mitochondrial (mtDNA) and paternally inherited chloroplast (cpDNA) DNA markers. Among the 16 mtDNA regions analysed, only two mitotypes were detected, while the study of six cpDNA microsatellite markers revealed eight different chlorotypes. The average cpDNA diversity (H = 0.415) was low but much higher than that for mtDNA (H = 0). The distribution of mitotypes revealed two clear nonoverlapping areas (G(ST) = N(ST) = 1), one including northern populations and the second one including the southern and central stands, suggesting that these two regions may represent different ancestral populations. The cpDNA markers showed lower population differentiation (G(ST) = 0.362; R(ST) = 0.230), implying that the two ancestral populations continued to exchange pollen after their initial geographic separation. A lack of a phylogeographic structure was revealed by different spatial analyses of cpDNA (G(ST) > R(ST); and samova), and reduced cpDNA gene flow was noted among populations (Nm = 0.873). Some stands deviated significantly from the mutation-drift equilibrium, suggesting recent bottlenecks. Altogether, these various trends are consistent with the hypothesis of a population collapse during the Holocene warming and suggest that most of the modern P. chihuahuana populations are now effectively isolated with their genetic diversity essentially modelled by genetic drift. The conservation efforts should focus on most southern populations and on the northern and central stands exhibiting high levels of genetic diversity. Additional mtDNA sequence analysis confirmed that P. martinezii (Patterson) is not conspecific with P. chihuahuana, and thus deserves separate conservation efforts.  相似文献   

2.
Wang HW  Ge S 《Molecular ecology》2006,15(13):4109-4122
Cathaya argyrophylla is an endangered conifer restricted to subtropical mountains of China. To study phylogeographical pattern and demographic history of C. argyrophylla, species-wide genetic variation was investigated using sequences of maternally inherited mtDNA and biparentally inherited nuclear DNA. Of 15 populations sampled from all four distinct regions, only three mitotypes were detected at two loci, without single region having a mixed composition (G(ST) = 1). Average nucleotide diversity (theta(ws) = 0.0024; pi(s) = 0.0029) across eight nuclear loci is significantly lower than those found for other conifers (theta(ws) = 0.003 approximately 0.015; pi(s) = 0.002 approximately 0.012) based on estimates of multiple loci. Because of its highest diversity among the eight nuclear loci and evolving neutrally, one locus (2009) was further used for phylogeographical studies and eight haplotypes resulting from 12 polymorphic sites were obtained from 98 individuals. All the four distinct regions had at least four haplotypes, with the Dalou region (DL) having the highest diversity and the Bamian region (BM) the lowest, paralleling the result of the eight nuclear loci. An AMOVA revealed significant proportion of diversity attributable to differences among regions (13.4%) and among populations within regions (8.9%). F(ST) analysis also indicated significantly high differentiation among populations (F(ST) = 0.22) and between regions (F(ST) = 0.12-0.38). Non-overlapping distribution of mitotypes and high genetic differentiation among the distinct geographical groups suggest the existence of at least four separate glacial refugia. Based on network and mismatch distribution analyses, we do not find evidence of long distance dispersal and population expansion in C. argyrophylla. Ex situ conservation and artificial crossing are recommended for the management of this endangered species.  相似文献   

3.
Genetic diversity and population genetic structure of natural Oryza rufipogon populations in China were studied based on ten microsatellite loci. For a total of 237 individuals of 12 populations collected from four regions, a moderate to high level of genetic diversity was observed at population levels with the number of alleles per locus ( A) ranging from 2 to 18 (average 10.6), and polymorphic loci ( P) from 40.0% to 100% (average 83.3%). The observed heterozygosity ( H(O)) varied from 0.163 to 0.550 with the mean of 0.332, and the expected heterozygosity ( H(E)) from 0.164 to 0.648 with the mean of 0.413. The level of genetic diversity for Guangxi was the highest. These results are in good agreement with previous allozyme and RAPD studies. However, it was unexpected that high genetic differentiation among populations was found ( R(ST) = 0.5199, theta = 0.491), suggesting that about one-half of the genetic variation existed between the populations. Differentiation (pairwise theta) was positively correlated with geographical distance ( r = 0.464), as expected under the isolation by distance model. The habitat destruction and degradation throughout the geographic range of O. rufipogon may be the main factor attributed to high genetic differentiation among populations of O. rufipogon in China.  相似文献   

4.
Population genetic structure of Arabidopsis lyrata in Europe   总被引:2,自引:0,他引:2  
Population genetic theory predicts that the self-incompatible and perennial herb, Arabidopsis lyrata, will have a genetic structure that differs from the self-fertilizing, annual Arabidopsis thaliana. We quantified the genetic structure for eight populations of A. lyrata ssp. petraea in historically nonglaciated regions of central Europe. Analysis of 20 microsatellite loci for 344 individuals demonstrated that, in accordance with predictions, diploid populations had high genome-wide heterozygosity (H(O) = 0.48; H(E) = 0.52), high within-population diversity (83% of total) compatible with mutation-drift equilibrium, and moderate differentiation among populations (F(ST) = 0.17). Within a single population, the vast majority of genetic variability (92%) was found at the smallest spatial scale (< 3 m). Although there was no evidence of biparental inbreeding or clonal propagation at this scale (F(IS) = 0.003), significant fine-scale spatial autocorrelation indicated localized gene flow presumably due to gravity dispersed seeds (Sp = 0.018). Limited gene flow between isolated population clusters (regions) separated by hundreds of kilometres has given rise to an isolation by distance pattern of diversification, with low, but significant, differentiation among regions (F(ST) = 0.05). The maintenance of geographically widespread polymorphisms and uniformly high diversity throughout central Europe is consistent with periglacial survival of A. lyrata ssp. petraea north of the Alps in steppe-tundra habitats during the last glacial maximum. As expected of northern and previously glaciated localities, A. lyrata in Iceland was genetically less diverse and highly differentiated from central Europe (H(E) = 0.37; F(ST) = 0.27).  相似文献   

5.
Genetic diversity was measured by allozyme electrophoresis in eight natural populations of the threatened Canarian endemic Viola palmensis Webb & Berth. (Violaceae). Nineteen alleles corresponding to 11 gene loci were detected. High levels of genetic diversity were found, ranging from 36.3 to 45.4 % for the percentage of polymorphic loci (P), from 1.45 to 1.60 for the average number of alleles per locus (A) and from 0.128 to 0.200 for the expected heterozygosity (H(e)). Between 85.5 and 96.6 % of genetic variability was apportioned within populations. As a whole, populations were not at Hardy-Weinberg equilibrium, with a deficit of heterozygous individuals attributable to the existence of genetic structuring in the populations analysed. The levels of interpopulation genetic differentiation were low (mean F(ST) = 0.100), while genetic identity pair-wise comparisons were high (mean I = 0.973) suggesting considerable levels of gene flow among populations. No relationship was detected between genetic differentiation and geographical distances between populations. An outcrossing insect-mediated breeding system might contribute to pollen dispersion of this species. For conservation genetics we suggest in situ preservation areas are defined that are free of disturbance and that include populations with the highest genetic diversity.  相似文献   

6.
The black tiger shrimp (Penaeus monodon) is an ecologically and economically important penaeid species and is widely distributed in the Indo-Pacific region. Here we investigated the genetic diversity of P. monodon (n = 355) from eight geographical regions by genotyping at 10 microsatellite loci. The average observed heterozygosity at various loci ranged from 0.638 to 0.743, indicating a high level of genetic variability in this region. Significant departures from Hardy-Weinberg equilibrium caused by heterozygote deficiency were recorded for most loci and populations. Pairwise F(ST) and R(ST) values revealed genetic differentiation among the populations. Evidence from the assignment test showed that the populations in the West Indian Ocean were unique, whereas other populations examined were partially admixed. In addition, the non-metric multidimensional scaling analysis indicated the presence of three geographic groups in the Indo-Pacific region, i.e. the African populations, a population from western Thailand and the remaining populations as a whole. We also sequenced and analysed the mitochondrial control region (mtCR) in these shrimp stocks to determine whether the nuclear and mitochondrial genomes show a similar pattern of genetic differentiation. A total of 262 haplotypes were identified, and nucleotide divergence among haplotypes ranged from 0.2% to 16.3%. Haplotype diversity was high in all populations, with a range from 0.969 to 1. Phylogenetic analysis using the mtCR data revealed that the West Indian Ocean populations were genetically differentiated from the West Pacific populations, consistent with the microsatellite data. These results should have implications for aquaculture management and conservation of aquatic diversity.  相似文献   

7.
This study examined the population genetic structure of the major malaria vector, Anopheles arabiensis mosquitoes, in Ethiopia and Eritrea. Ethiopia and Eritrea have great geographical diversity, with high mountains, rugged plateaus, deep gorges, and rolling plains. The plateau is bisected diagonally by the Great Rift Valley into the Northwestern Highlands and the Southeastern Highlands. Five A. arabiensis populations from the Northwestern Highlands region and two populations from high-altitude sites in the Great Rift Valley were genotyped using six microsatellite markers to estimate the genetic diversity and population genetic structure of A. arabiensis. We found that A. arabiensis populations from the Northwestern Highlands and the Great Rift Valley region showed a similar level of genetic diversity. The genetic differentiation (F(ST)) of the five mosquito populations within the Northwestern Highlands region was 0.038 (P <.001), while the two populations within the Great Rift Valley showed little genetic differentiation (F(ST) = 0.007, P <.01). The degree of genetic differentiation between the Northwestern Highlands region and the Great Rift Valley region was small but statistically significant (F(ST) = 0.017, P <.001). The population genetic structure of A. arabiensis in the study area did not follow the isolation-by-distance model (r(2) = 0.014, P >.05). The low F(ST) estimates for A. arabiensis populations in Ethiopia and Eritrea are consistent with the general population genetic structure of this species in East Africa based on other molecular markers.  相似文献   

8.
Recent habitat loss and fragmentation superimposed upon ancient patterns of population subdivision are likely to have produced low levels of neutral genetic diversity and marked genetic structure in many plant species. The genetic effects of habitat fragmentation may be most pronounced in species that form small populations, are fully self-compatible and have limited seed dispersal. However, long-lived seed banks, mobile pollinators and long adult lifespans may prevent or delay the accumulation of genetic effects. We studied a rare Australian shrub species, Grevillea macleayana (Proteaceae), that occurs in many small populations, is self-compatible and has restricted seed dispersal. However, it has a relatively long adult lifespan (c. 30 years), a long-lived seed bank that germinates after fire and is pollinated by birds that are numerous and highly mobile. These latter characteristics raise the possibility that populations in the past may have been effectively large and genetically homogeneous. Using six microsatellites, we found that G. macleayana may have relatively low within-population diversity (3.2-4.2 alleles/locus; Hexp = 0.420-0.530), significant population differentiation and moderate genetic structure (FST = 0.218) showing isolation by distance, consistent with historically low gene flow. The frequency distribution of allele sizes suggest that this geographical differentiation is being driven by mutation. We found a lack mutation-drift equilibrium in some populations that is indicative of population bottlenecks. Combined with evidence for large spatiotemporal variation of selfing rates, this suggests that fluctuating population sizes characterize the demography in this species, promoting genetic drift. We argue that natural patterns of pollen and seed dispersal, coupled with the patchy, fire-shaped distribution, may have restricted long-distance gene flow in the past.  相似文献   

9.
Habitat fragmentation is known to cause genetic differentiation between small populations of rare species and decrease genetic variation within such populations. However, common species with recently fragmented populations have rarely been studied in this context. We investigated genetic variation and its relationship to population size and geographical isolation of populations of the common plant species, Lychnis flos-cuculi L., in fragmented fen grasslands. We analysed 467 plants from 28 L. flos-cuculi populations of different sizes (60 000-54 000 flowering individuals) in northeastern Switzerland using seven polymorphic microsatellite loci. Genetic differentiation between populations is small (F(ST) = 0.022; amova; P < 0.001), suggesting that gene flow among populations is still high or that habitat fragmentation is too recent to result in pronounced differentiation. Observed heterozygosity (H(O) = 0.44) significantly deviates from Hardy-Weinberg equilibrium, and within-population inbreeding coefficient F(IS) is high (0.30-0.59), indicating a mixed mating breeding system with substantial inbreeding in L. flos-cuculi. Gene diversity is the only measure of genetic variation which decreased with decreasing population size (R = 0.42; P < 0.05). While our results do not indicate pronounced effects of habitat fragmentation on genetic variation in the still common L. flos-cuculi, the lower gene diversity of smaller populations suggests that the species is not entirely unaffected.  相似文献   

10.
Germinated seeds from 11 populations of green alder [ Alnus crispa (Ait.) Pursh] sampled in four Canadian provinces were analysed for electrophoretically demonstrable diversity of 10 enzymes encoded by 15 structural loci. Of these, nine were polymorphic, and on average, 52% of the loci per population were polymorphic. Assuming a diploid model of expression, average level of expected heterozygosity was 0.11 with nearly all populations in Hardy-Weinberg equilibrium for the set of polymorphic loci analysed. No significant inbreeding and associated subpopulation structuring were noted. Rates of gene flow appeared high within and among populations. Although little divergence was observed among populations, genetic and geographical distances between populations were related. Discriminant and cluster analyses revealed a pattern of genetic variation associated with geography. Populations from northern Quebec were poorly differentiated, whereas western populations from Alberta exhibited a larger degree of genetic differentiation. Introgresive hybridization with the sympatric species Alnus sinuata (Regel) Rydberg and partial isolation in the West are suggested as an explanation for this larger differentiation. The occurrence and significance of rare alleles is discussed in relation to the importance of geographical distance in the process of population differentiation in this species.  相似文献   

11.
Kang M  Jiang M  Huang H 《Annals of botany》2005,95(7):1145-1151
BACKGROUD AND AIMS: Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) is distributed in fragmented habitat patches in eastern China. It is highly endangered because of severe disturbance by anthropogenic activities. Information on genetic variation and structure is critical for developing successful conservation strategies for this species. METHODS: Allozyme variation of population genetic diversity and structure was investigated for a total of 98 individuals sampled from four extant populations using isoelectric focusing in thin-layer polyacrylamide slab gels. KEY RESULTS: Based on 20 loci scored from the nine enzymes examined, a high genetic diversity was detected at both the species and population level, while there was a loss of low frequency alleles (<0.1) in all populations. Most loci showed deviation from Hardy-Weinberg equilibrium due to excess of heterozygotes in all populations, suggesting that selection for heterozygotes has occurred in this species. The genetic diversity was mainly found within populations with a moderate genetic differentiation (F(ST) = 0.13), but the two geographically discontinuous population groups showed significant differences, with F-statistic values of 0.078 for the Zhejiang populations and 0.014 for the Anhui populations, respectively. CONCLUSIONS: It appears most likely that this species has experienced a recent decrease in population size, and genetic drift in small populations has resulted in a loss of alleles occurring at low frequency. The differentiation into two population groups reflects a population genetic consequence that has been influenced by the different land-use in the two regions. Some conservation concerns are discussed together with possible strategies for implementing in situ and ex situ conservation.  相似文献   

12.
We examined levels of genetic variation and genetic structure in the leafy cactus (Pereskia guamacho) in arid and semiarid zones in Venezuela. We surveyed genetic diversity within 17 populations using 19 allozyme loci. Genetic diversity was relatively high at both the species (P(s) = 89%, A(s) = 3.26, AP(s) = 3.53, H(es) = 0.24) and population (P(p) = 63%, A(p) = 1.90, AP(p) = 2.42, H(ep) = 0.20) levels. A significant deficit of heterozygote individuals was detected within populations in the Paraguana Peninsula region (F(IS) = 0.301). Relatively low levels of population differentiation were detected at macrogeographic (G(ST) = 0.112) and regional levels (G(ST) = 0.044 for peninsula region and G(ST) = 0.074 for mainland region), suggesting substantial genetic exchange among populations; however, gene flow in this species seems to be regulated by the distance among populations. Overall, estimates of genetic diversity found in P. guamacho are concordant with the pattern observed for other cacti surveyed, namely high levels of polymorphism and genetic diversity with one common allele and several rare alleles per locus. Differences in gene dispersal systems between this species and other cacti studied were not reflected in the patterns of genetic diversity observed. The concentration of the highest estimates of genetic variation in northwestern Venezuela suggests a potential reservoir of plant genetic diversity within xerophilous ecosystems in northern South America.  相似文献   

13.
We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.  相似文献   

14.
伞花木(Eurycorymbus caraleriei)为中国特有的第三纪孑遗单种属植物,雌雄异株。采用超薄平板微型聚丙烯酰胺等电聚焦电泳方法对其5个自然居群和1个人工迁地保护居群的等位酶变异进行了初步研究。对7个酶系统中14个位点的等位酶居群遗传多样性及遗传结构分析结果表明:伞花木具有较高水平的遗传多样性,其每位点平均等位基因数A=1.6,平均多态位点比率P=42.9%,平均预期遗传杂合度Hr=0.216;各居群的遗传多样性无显著性差异,但都表现为严重偏离Hardy-Weinberg平衡的杂合子过量;其遗传变异主要发生在居群内(93.1%),居群间分化较小(Gst=0.069),居群问遗传一致度较高(I=0.965~1.000)。推断这可能是由于其古老孑遗性、雌雄异株、混和传粉方式的生物学特性以及其长寿命的生活史等原因所导致;同时,居群间的较高基因流(Nm=3.128)也可能起到很大的作用。还使用UPGMA聚类方法推断了武汉植物园迁地保护的野外居群来源,在对迁地保护居群的评价中发现迁地保护居群仅保存了该物种基因型多样性的16%,在此基础上提出了今后进一步的保育策略。  相似文献   

15.
In natural populations of Arabidobsis thaliana (L.) Heynh., occupying northern limits of the species range (Karelia), the level of genetic diversity was evaluated. In two insular and one mainland population variability at 82 RAPD loci was tested. Considerable genetic diversity revealed (P = 4.5%; Hexp = 0.177) was not typical of self-pollinating plant species. It was demonstrated that genetic differentiation among the populations (G(ST)= 0.680) was rather high, pointing to the low level of gene flow in the isolated insular populations. It was suggested that the high level of Arabidopsis population polymorphism in Karelia could be associated with extreme growing conditions at the northern limits of the species range.  相似文献   

16.
Determining the genetic structure of tropical bird populations is important for assessing potential genetic effects of future habitat fragmentation and for testing hypotheses about evolutionary mechanisms promoting diversification. Here we used 10 microsatellite DNA loci to describe levels of genetic differentiation for five populations of the lek-mating blue manakin (Chiroxiphia caudata), sampled along a 414-km transect within the largest remaining continuous tract of the highly endangered Atlantic Forest habitat in southeast Brazil. We found small but significant levels of differentiation between most populations. F(ST) values varied from 0.0 to 0.023 (overall F(ST)=0.012) that conformed to a strong isolation by distance relationship, suggesting that observed levels of differentiation are a result of migration-drift equilibrium. N(e)m values estimated using a coalescent-based method were small (相似文献   

17.
Xiao LQ  Ge XJ  Gong X  Hao G  Zheng SX 《Annals of botany》2004,94(1):133-138
BACKGROUND AND AIMS: Cycas guizhouensis (Cycadaceae) is a rare and endangered species endemic to the southwest of China. An investigation was undertaken into the genetic variation of wild populations. METHODS: ISSR markers were used to determine the genetic variation within and between 12 extant populations of this species. KEY RESULTS: Low genetic diversity (at population level, P = 14.21 %, H(E) = 0.0597; at species level, P = 35.90 %, H(T) = 0.1082) and a high degree of differentiation among populations (G(ST) = 0.4321) were detected. CONCLUSIONS: This genetic structure is considered to be due to the combined effects of slow biochemical evolution, genetic drift, inbreeding and limited gene flow between populations. Based on these findings, strategies are proposed for the genetic conservation and management of the species.  相似文献   

18.
Kang M  Ye Q  Huang H 《Annals of botany》2005,96(7):1265-1274
BACKGROUND AND AIMS: Isoetes sinensis (Isoeteaceae) is a critically endangered aquatic quillwort in eastern China. Rapid decline of extant population size and local population extinction have occurred in recent years and have raised great concerns among conservationists. METHODS: Amplified fragment length polymorphisms (AFLPs) were used to investigate the genetic variation and population structure of seven extant populations of the species. KEY RESULTS: Eight primer combinations produced a total of 343 unambiguous bands of which 210 (61.2 %) were polymorphic. Isoetes sinensis exhibited a high level of intra-population genetic diversity (H(E) = 0.118; hs = 0.147; I = 0.192; P = 35.2 %). The genetic variation within each of the populations was not positively correlated with their size, suggesting recent population decline, which is well in accordance with field data of demographic surveys. Moreover, a high degree of genetic differentiation (F(ST) = 0.535; G(ST) = 0.608; theta(B) = 0.607) was detected among populations and no correlation was found between geographical and genetic distance, suggesting that populations were in disequilibrium of migration-drift. Genetic drift played a more important role than gene flow in the current population genetic structure of I. sinensis because migration of I. sinensis is predominantly water-mediated and habitat range was highly influenced by environment changes. CONCLUSIONS: Genetic information obtained in the present study provides useful baseline data for formulating conservation strategies. Conservation management, including both reinforcement for in situ populations and ex situ conservation programmes should be carefully designed to avoid the potential risk of outbreeding depression by admixture of individuals from different regions. However, translocation within the same regional population should be considered as a measure of genetic enhancement to rehabilitate local populations. An ex situ conservation strategy for conserving all extant populations to maximize genomic representation of the species is also recommended.  相似文献   

19.
Patterns of variation in quantitative characters and genetic markers were compared among six regional populations of white spruce [Picea glauca (Moench) Voss]. Although some phenotypic characters were correlated with latitude (r = 0.791), longitude (r = -0.796) and precipitation during the growing season (r = 0.789), variability at genetic markers was not correlated with geographical or bioclimatic variables, and followed neutral expectations. Estimates of genetic diversity and population differentiation for 14 allozymes (translated regions of coding genes) were essentially indistinguishable from those observed for 11 expressed sequence tag polymorphisms (ESTPs) from untranslated regions of coding genes. Variation among populations for quantitative traits such as eighth year height (Q(ST) = 0.082), thirteenth year height (Q(ST) = 0.069), total wood density (Q(ST) = 0.102) and date of budset (Q(ST) = 0.246), was greater than for allozymes (G(ST) = 0.014) and ESTPs (G(ST) = 0.019). These trends suggest a strong adaptive response in quantitative traits, contrasting to allozymes and ESTPs where no selective response could be detected and where populations appeared to be essentially in a migration-drift equilibrium.  相似文献   

20.
Marine scallops, with extended planktonic larval stages which can potentially disperse over large distances when advected by marine currents, are expected to possess low geographical differentiation. However, the sessile lifestyle as adult tends to form discrete "sea beds" with unique population dynamics and structure. The narrow distribution of Zhikong scallop (Chlamys farreri), its long planktonic larval stage, and the extremely hydrographic complexity in its distribution range provide an interesting case to elucidate the impact of marine currents on geographical differentiation for marine bivalves at a fine geographical scale. In this study, we analyzed genetic variation at nine microsatellite DNA loci in six locations throughout the distribution of Zhikong scallop in the Northern China. Very high genetic diversity was present in all six populations. Two populations sampled from the same marine gyre had no detectable genetic differentiation (F (ST) = 0.0013); however, the remaining four populations collected from different marine gyres or separated by strong marine currents showed low but significant genetic differentiation (F (ST) range 0.0184-0.0602). Genetic differentiation was further analyzed using the Monmonier algorithm to identify genetic barriers and using the assignment test conducted by software GeneClass2 to ascertain population membership of individuals. The genetic barriers fitting the orientation of marine gyres/currents were clearly identified, and the individual assignment analysis indicated that 95.6% of specimens were correctly allocated to one of the six populations sampled. The results support the hypothesis that significant population structure is present in Zhikong scallop at a fine geographical scale, and marine currents can be responsible for the genetic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号