首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Male rats were injected with 50 mg ethylene-1,2-dimethanesulphonate/kg from Day 5 to Day 16 after birth and control rats received injections of the same volume of vehicle. Testes were studied at various times from Day 6 to Day 108 using histochemistry, light and electron microscopy. Fine structural degenerative changes were observed in the Leydig cells and seminiferous tubules of EDS-treated animals as early as Day 6. By Day 11 no Leydig cells could be detected and the interstitia of EDS-treated testes contained large numbers of fibroblast-like cells which formed peritubular collars 3-5 cells thick; the tubules contained Sertoli cells with heterogeneous inclusions and large numbers of lipid droplets. A small number of Leydig cells was found at Day 14 and their numbers increased so that, in animals of 28 days and older, large clusters of Leydig cells were present between severely atrophic tubules. These tubules contained Sertoli cells with few organelles; germinal cells were not observed after 28 days in EDS-treated animals. These results show that EDS destroys the fetal population of Leydig cells postnatally and this mimics the well documented effect of EDS on adult Leydig cells. The seminiferous tubules were permanently damaged by EDS in the present experiments. Tubular damage could have been due to a direct cytotoxic effect of multiple injections of EDS on the tubule before the blood-testis barrier develops or due to withdrawal of androgen support secondary to Leydig cell destruction.  相似文献   

2.
Ethane dimethane sulphonate (EDS) is a cytotoxic drug that selectively destroys Leydig cells in adult testes. This study has examined the effect of a single injection of EDS on the Leydig cell populations present in the testes of rats aged 5, 10, or 20 days. Microscopic examination of the tissue demonstrated that the fetal Leydig cell population was destroyed at all ages, but that subsequent development of the adult population of Leydig cells was not affected. Whilst the destruction of the fetal Leydig cells in this acute phase of EDS on 5-day-old rats was accompanied by a decline in serum testosterone levels, there was no apparent effect on this hormone when EDS administered at 10 or 20 days of age, despite the destruction of fetal Leydig cells in these rats. The long-term effects of EDS on Day 5 of age resulted in proliferation of the intertubular tissue in which more Leydig cells were observed, but serum testosterone and testosterone levels in response to human chorionic gonadotropin stimulation in vitro were normal despite moderate or severe disruption of the seminiferous epithelium. These data show that the fetal Leydig cells of immature testes are sensitive to the cytotoxic effects of EDS in the adult, but the response of the testes differs depending on the age at which the drug is administered.  相似文献   

3.
This study confirms our previous data on the effects of sex hormones on mast cell number (MCN) in the testis of frog Rana esculenta. After 15 days of treatment with oestradiol (E2) MCN strongly increases, while testosterone has no effect. After 30 days only a small increase in MCN is observed. These differences could be due to the non-physiological effect of E2 over a prolonged period. We also confirmed a massive increase in MCN after 15 or 30 days of treatment with cyproterone acetate (CPA). This increase in MCN is also observed after administration of CPA with tamoxifen. Ultrastructural analysis of testis shows empty spaces with degenerating Leydig cells in the interstitial compartment and numerous germinal cells completely degenerated, probably apoptotic, in the adjacent germinal compartment. The same effects were observed in testes after treatment with only CPA. Chronic E2 treatment provokes an increase in MCN on day 2. From day 4 to 12 of the treatment, MCN decreases dramatically and many germinal tubules appear strongly disorganised. In conclusion, the present results confirm that E2 treatment induces changes in MCN and chronic E2 treatment modifies the morphology of the frog testes. In addition, blocking androgen receptors with CPA, alone or in combination with tamoxifen, causes a significant increase in MCN, confirming the involvement of androgens in mast cell proliferation and/or differentiation.  相似文献   

4.
The objective of the present study was to investigate the regulation of a key component of testicular androgen biosynthesis, i.e. the cytochrome P450XVII of the steroid-17 alpha-monooxygenase/C17,20-lyase, after surgical induction of bilateral cryptorchidism in vivo. Seven days after induction of cryptorchidism, P450XVII concentrations are diminished (as compared to sham-operated controls) by 64% in isolated purified Leydig cells but only by 44% in the total Leydig cell compartment of the testis, since the Leydig cell yield from cryptorchid testes is by 53% higher than that from control testes. Using microsomal suspensions prepared from testicular homogenates, P450XVII content per testis equivalent is found to be decreased by 36% seven days after incubation of cryptorchidism, whereas the P450XVII concentration per gram testis is not changed due to testicular involution. Fourteen days after induction of cryptorchidism, the induction of the Leydig cell system appears to superimpose on the down-regulation of P450XVII. The study demonstrates both a strong sensitivity of P450XVII to short-term elevation of testicular temperature and a differentiation between effects of cryptorchidism on total testicular content and specific cellular and subcellular concentration of this steroidogenic protein.  相似文献   

5.
Endocrine effects of cholera enterotoxin (CET) on male gonads were investigated in normal and hypophysectomized rats. After intratesticular injection of 5 micrograms of CET in the bilateral testes of normal rats, serum testosterone concentration remarkably increased after 24 hr, remained significantly elevated for at least 3 days and returned to the control level in 7 days. Serum LH level decreased in the undetectable range after 1--3 days; serum FSH level also significantly decreased after 3 days. Both gonadotropin levels increased 28 days after the injection, when the CET-injected testis decreased in weight and was accompanied by marked loss of germinal cells. When 5 micrograms of CET was injected intratesticularly in the bilateral testes of hypophysectomized rats, adenylate cyclase activity of a CET-injected testis was remarkably stimulated after 6 hr, remained four times elevated for at least 3 days and returned to the control level in 7 days. In relatively good accordance with the increase in adenylate cyclase activity, testosterone content remarkably enhanced in the CET-injected testis. These in vivo data indicate that the intratesticular injection of CET prolongedly stimulates the adenylate cyclase activity of testicular cells including Leydig cells and increases testosterone production, and suggest that the prolonged enzyme stimulation results in the sustained elevation of serum testosterone concentration for at least 3 days, causing the stimulation of the negative feedback mechanism of hypophysealtesticular axis to decrease serum LH levels in the undetectable range.  相似文献   

6.
Summary Five-day-old male rats received a single treatment of ethane dimethanesulphonate (EDS), and the response of the testis on days 6–10 and 21 was examined by light microscopy and morphometry, supplemented by measurement of peripheral testosterone levels. One day after treatment, foetal Leydig cells degenerated, showing fragmentation, condensation and nuclear pyknosis. Macrophages phagocytosed the foetal Leydig cells resulting in their disappearance by day 7. Destruction of foetal Leydig cells was followed by an arrest of testicular growth in comparison to testes of intact age-matched control rats. In testes of EDS-treated rats, gonocytes and spermatogonia also degenerated, forming pyknotic bodies within the seminiferous cords. In contrast, interstitial fibroblasts and mesenchymal cells showed proliferative activity, which on days 4 and 5 after treatment resulted in peritubular hyperplasia surrounding each seminiferous cord. Thereafter, on day 21 after EDS administration, the previously depressed serum testosterone levels became markedly elevated coincident with the development of many immature-type Leydig cells, of which the total volume per testis was similar to that of Leydig cells in control testes, despite a four- to five-fold difference in testicular volumes. The results indicate that, although EDS destroys the foetal Leydig cells and impairs spermatogenesis, the interstitial tissue exhibits increased cell growth. The latter probably occurs in response to altered gonadotrophic stimulation and/or disturbances in the interaction between the seminiferous cords and the interstitial tissue.  相似文献   

7.
One single injection of ethylene dimethane sulfonate (EDS) to mature rats causes specific degeneration of testicular Leydig cells which is complete after 3 days. At this time no steroidogenic activities can be detected, indicating that Leydig cells are the source of steroids. The mechanism of this cytotoxic effect of EDS has been investigated with isolated cells. Extensive protein alkylation has been shown to occur in Leydig cells, Sertoli cells and hepatocytes. Steroid production by Leydig cells is always inhibited by EDS, but cytotoxic effects of EDS could only be demonstrated in Leydig cells from mature rats or tumour tissue and not in Leydig cells from immature rats. A new population of Leydig cells develops during the next 2-5 weeks after EDS treatment. In hypophysectomized rats this repopulation only occurs when hCG is given daily. FSH has no effects. The proliferative activity in the interstitial tissue increases within 2 days after administration of hCG or EDS and there are indications that LH and locally produced factors are involved in the proliferation of Leydig cells or Leydig cell precursor cells. Inhibition of cAMP production with inhibitors of adenylate cyclase results in an enhancement of the LH-stimulated steroid production similar to that observed with an LHRH agonist and phospholipase C (PLC). Since the effects of LHRH and PLC on protein phosphorylation and steroid production are similar and different from LH or active phorbol esters, it is proposed that LHRH and PLC may stimulate steroid production via liberation of calcium from a specific intracellular pool. Sterol carrier protein2 (SCP2) which is specifically localized in Leydig cells and regulated by LH probably plays a role in the delivery of cholesterol to the mitochondria although the mechanism of this carrier function is not clear. The results indicate that regulation of Leydig cell development and the steroidogenic activities by gonadotrophins and locally produced factors occur via different transducing systems and regulatory pathways.  相似文献   

8.
9.
Phospholipid methylation by intact Leydig cells was investigated by determining the incorporation of radioactivity from [3H-methyl] methionine into phospholipids. Leydig cells incorporated significantly more radioactivity into phospholipids than did unpurified testicular cells, non-Leydig testicular cells, or red blood cells. Approximately 40% of the radioactivity was found in phosphatidylcholine, indicating that the methyltransferase pathway for the synthesis of this phospholipid is highly active in rat Leydig cells. Addition of luteinizing hormone to cells preloaded with [3H-methyl] methionine did not alter the rate of phospholipid methylation. However, phospholipid methylation by Leydig cells desensitized by the injection of human chorionic gonadotropin 1 to 7 days previously was reduced by approximately 60%. Inhibition of phospholipid methylation to 75% of normal with homocysteine thiolactone did not affect luteinizing hormone-stimulated androgen production. Further inhibition of phospholipid (and protein) methylation by treatment with homocysteine thiolactone and 3-deazaadenosine significantly reduced luteinizing hormone-stimulated androgen production. The results of this study demonstrate that the methyltransferase pathway for the synthesis of phosphatidylcholine is highly active in intact Leydig cells but is reduced in desensitized Leydig cells. There does not appear to be a close association between the activity of this pathway and the ability of luteinizing hormone to acutely stimulate androgen production.  相似文献   

10.
Summary The effect of a single i.p. administration of ethane dimethanesulphonate (EDS) upon rat testicular histology was studied by light microscopy and morphometry up to 4 weeks after treatment. One day after injection the interstitial tissue exhibited degenerating Leydig cells, abundant pyknotic interstitial cells, deposition of cellular debris and extensive networks of fibrillar material. Macrophages contained greatly increased numbers of cytoplasmic inclusion bodies. From 3 to 7 days morphometric analysis showed that Leydig cells and cellular debris had disappeared from the interstitial tissue, leaving only macrophages, fibroblasts and lymphatic endothelial tissue. A very small number of new Leydig cells were seen on day 14, often located in peritubular or perivascular positions. Regeneration of foetal-like Leydig cells occurred by 4 weeks, their cytoplasm containing large lipid inclusions and, numerous Leydig cells were often observed closely applied to the walls of the seminiferous tubules. The observations suggest that, after experimental destruction and depletion of Leydig cells, an interstitial precursor cell, as yet unidentified, gives rise to a new Leydig cell population. EDS thus offers a valuable opportunity to study further the interactions between the seminiferous tubules and the interstitial tissue following the destruction and subsequent regeneration of the Leydig cells.  相似文献   

11.
A single dose of EDS was given to mature male rats and interstitial fluid (IF) was collected to determine the potency of mitogenic and steroidogenic activities therein. The potency of the factor stimulating testosterone secretion in vitro by Percoll-purified Leydig cells was significantly elevated 2 weeks after EDS, whilst the potency of mitogenic activities (stimulation of DNA synthesis by BALB/c 3T3 cells) was not elevated until 4 weeks after EDS treatment. This study suggests that two separate factors, one with mitogenic and the other steroidogenic activity, may be involved in the response of Leydig cells after EDS administration. The mitogenic factor may play a role in Leydig cell regeneration whereas the testosterone-stimulating factor may be involved in testicular testosterone homeostasis.  相似文献   

12.
Summary Ethane dimethanesulphonate (EDS) was used as a specific cytotoxin to eliminate the Leydig cell population of the adult rat testis. Ultrastructural, morphometric and serum gonadotrophin and testosterone analysis was used to study the response of the intertubular tissue of the testis from 1 day to 10 weeks after EDS treatment. In control animals, the testis contained approximately 28 million Leydig cells and 8 million macrophages. Three to seven days after EDS treatment, Leydig cells were absent and serum testosterone was undetectable. Macrophage numbers increased three-fold by 3 days and returned to pretreatment values thereafter. At 2 and 3 weeks post-EDS, foetal-type Leydig cells (1–2 million per testis) appeared in proximity to perivascular and peritubular tissues, a feature also observed at 4 weeks when numerous such cells (15 million per testis) formed prominent clusters in perivascular and peritubular locations. Between 6 and 10 weeks after EDS treatment, the foetal-type Leydig cells were transformed morphologically into adult-type Leydig cells, they occupied central intertubular positions and their numbers were restored to pretreatment values. Regeneration of Leydig cells was reflected by elevated serum testosterone levels which returned towards the normal range. The results demonstrate the regenerative capacity of the testicular intertubular tissue and indicate a dual site of origin of Leydig cells which initially resemble foetal-type Leydig cells prior to establishing the adult-type Leydig cell population. The morphological pattern of Leydig cell regeneration suggests that in addition to gonadotrophic stimulation, local testicular factors from the seminiferous tubules may stimulate Leydig cell growth.  相似文献   

13.
Androgens drive spermatogenesis by processes that are largely unknown. Direct effects on germ cells and indirect effects mediated via testicular somatic elements are currently under consideration, and specific localization of androgens in seminiferous tubules may provide information as regards this. Adult male rats were injected with ethane dimethanesulfonate (EDS; 75 mg/kg body weight) or vehicle. Testes were fixed and paraffin-embedded for localization of testosterone immunoreactivity 1 and 2 weeks after treatment, using the unlabeled antibody (PAP) technique. Plasma testosterone dropped from a pre-treatment level of 2.3 ng/ml to below 0.2 ng/ml 3 days after EDS injection and remained at low levels until the end of observation, accompanied by a progressive decrease in testicular weight. In the seminiferous tubules of vehicle-injected males, testosterone immunoreactivity was found in nuclei of spermatocytes and spermatids and in nuclei and the cytoplasm of Sertoli cells, and showed typical variations according to the stage of spermatogenesis. One week after EDS treatment, immunoreactivity had disappeared from the seminiferous epithelium. Two weeks after treatment, staining of germ cells was detected in two out of four males. The disappearance and reappearance of immunoreactivity coincided with the time course of EDS effects on rat Leydig cells, and we conclude that it corresponds to androgen specifically localized in fixed, paraffin-embedded tissue. Because staining of germ cell nuclei varied with the stage of spermatogenesis, the technique may detect a physiologically relevant androgen fraction; its location suggests that androgens may also directly affect certain germ cell stages.  相似文献   

14.
The responsiveness of testicular tissue, in terms of testosterone (T) and estradiol-17 beta (E2) production, to human chorionic gonadotropin (hCG) stimulation in vitro was assessed during pubertal development of the boar. A morphometric investigation was conducted concurrently to quantitate Leydig cell and seminiferous tubule changes in the testes of developing boars. Testicular volume percentage of seminiferous tubules increased from 36% at 40 days of age to a maximum of 72% at 190 days of age. Increases in tubular diameter were from 65 micrometers at 40 days of age to 236 micrometers at 250 days of age. Testicular volume percentage of Leydig cells decreased from 40% at 40 days of age to 10% at 250 days of age. Leydig cell number increased rapidly to 130 days of age, remained constant through 160 days, and then increased steadily to 220 days of age. Volume per Leydig cell changed little from 40 to 130 days of age, increased by 75% at 160 days, and declined thereafter. Total Leydig cell weight increased steadily from 40 to 160 days of age and then declined slightly. The capacity of Leydig cells for T production and testicular tissue for E2 production was greatest (P less than 0.05) after hCG stimulation in boars that were 130 and 160 days of age. In addition, sensitivity, as judged by the regression coefficient of T or E2 production per Leydig cell on log dosage of hCG was greater (p less than 0.05) for T at 130 days of age and for E2 at 160 days of age. The data presented support the hypothesis that one factor in pubertal development of boars is an increased capacity and sensitivity of the testes to gonadotropin stimulation.  相似文献   

15.
In 3- to 5-month-old male Sprague-Dawley rats infected with the hepatic metacestode, Taenia taeniaeformis, the serum testosterone level was significantly lower than in comparable uninfected controls. By transmission electron microscopy, testicular Leydig cells of infected rats had less smooth endoplasmic reticulum than control Leydig cells. Cultured metacestodes isolated from the hepatic cysts secreted or excreted substances into the incubation medium. The effect of the excretory-secretory product on testosterone concentration in the sera and testes of 15-day-old rats was examined. Subcutaneous injection of 50-200 micrograms of excretory-secretory product/0.1 ml saline/rat for 2 days significantly reduced human chorionic gonadotropin-stimulated serum and testicular testosterone concentrations. Furthermore, the effect of the excretory-secretory product on isolated rat Leydig cell testosterone production was examined. Rat Leydig cells produced testosterone in vitro and, in the presence of 50 IU human chorionic gonadotropin/ml incubation medium, they responded with approximately 100% increase in testosterone production. Addition of 2-10 micrograms excretory-secretory product protein/ml of culture medium significantly reduced the testosterone production by rat Leydig cells in vitro. These results indicate that excretory-secretory product of cultured T. taeniaeformis metacestodes has a direct inhibitory effect on Leydig cell testosterone production under stimulation with human chorionic gonadotropin.  相似文献   

16.
The development of a new population of Leydig cells after specific elimination of existing Leydig cells in mature rats by ethylene dimethanesulphonate (EDS) was characterized by investigating the testicular activities of 5 alpha-reductase and non-specific esterase, the serum concentrations of 3 alpha-androstanediol and testosterone and the Leydig cell morphology. Plasma concentrations of both androgens were strongly reduced up to 15 days after administration of EDS. Thereafter, in contrast to the gradual and continuous increase of serum testosterone values, the changes in serum 3 alpha-androstanediol were transient, with the highest level on Day 35. The temporal pattern of testicular 5 alpha-reductase activity was almost similar to that of serum 3 alpha-androstanediol. The testicular esterase activity increased gradually from Day 25 until Day 76. The temporal changes in steroid concentrations and enzyme activities after EDS administration indicate that the development of the Leydig cells in EDS-treated rats occurs in a fashion similar to that in pubertal rats. However, the numerous lipid droplets and large nuclei in these Leydig cells indicate that these cells may also be classified as fetal cells. It is concluded that, after treatment with EDS, fetal and pubertal characteristics are present in Leydig cells. It is, however, unknown whether both characteristics are present in one or in two distinct cell populations.  相似文献   

17.
Adult male rats injected with cadmium chloride were compared with controls with respect to serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), androgens and testicular histology. A single injection of cadmium chloride (9 mg/kg) was found to bring about no consistent short term changes in the plasma levels of FSH or LH, but after a long period the levels of both these hormones were elevated. In contrast, the levels of androgen showed a sharp increase at 6 h which declined by 12 h. In accordance with the elevated levels of gonadotropins found at 9–28 days after cadmium chloride injection, the androgen levels showed a drastic reduction. Histological aspect of the testis revealed acute necrotic changes of which the vacuolation of spermatid nuclei and fibrosis of Leydig cells are noteworthy.  相似文献   

18.
delta 5-3 beta-Hydroxysteroid dehydrogenase is a key enzyme for testicular androgen biosynthesis and a marker for the Leydig cells. The hormonal regulation of this enzyme was studied in cultured rat testicular cells. Human chorionic gonadotropin (hCG) increased testosterone production in vitro while time course studies indicated a biphasic action of the gonadotropin on 3 beta-hydroxysteroid dehydrogenase activity. An initial stimulation (51%) of the enzyme was detected between 3 and 12 h of culture when medium testosterone was low. This is followed by an inhibition of 3 beta-hydroxysteroid dehydrogenase activity on days 2 and 3 of culture when medium testosterone was elevated. Concomitant treatment with a synthetic androgen (R1881) inhibited 3 beta-hydroxysteroid dehydrogenase activity and testosterone production in hCG-treated cultures while an anti-androgen (cyproterone acetate) increased 3 beta-hydroxysteroid dehydrogenase activity and testosterone biosynthesis. Addition of 10(-5) M spironolactone, an inhibitor of 17 alpha-hydroxylase, blocked the hCG stimulation of testosterone production but increased medium progesterone. In the absence of the secreted androgen, hCG stimulated 3 beta-hydroxysteroid dehydrogenase activity in a time- and dose-related manner. Furthermore, hCG stimulation of 3 beta-hydroxysteroid dehydrogenase activity and progesterone accumulation in spironolactone-supplemented cultures was decreased by concomitant treatment with R1881 but was not affected by cyproterone acetate. The inhibitory effect of R1881 was blocked by the anti-androgen. In the absence of hCG, treatment with testosterone, dihydrotestosterone, or R1881, but not promegestone, alone also inhibited 3 beta-hydroxysteroid dehydrogenase activity while the inhibitory effect of testosterone was blocked by cyproterone acetate. Thus, hCG stimulates 3 beta-hydroxysteroid dehydrogenase activity in cultured testicular cells. The androgenic steroidogenic end products, in turn, inhibit this enzyme. The hormonal regulation of 3 beta-hydroxysteroid dehydrogenase activity may be important in the ultrashort loop autoregulation of androgen biosynthesis.  相似文献   

19.
The Leydig cells, responsible for testicular androgen production, have two growth phases during the life-span of mammals. The fetal population appears during fetal life and is responsible for the androgen-induced differentiation of the male genitalia. The fetal Leydig cells disappear after birth, and the other population, the adult Leydig cells, appears during puberty and persists for the whole adult life. The fetal Leydig cells, evidently due to the intrauterine endocrine milieu and their special functional requirements in genital differentiation, differ both morphologically and functionally from the adult population. The purpose of this review is to elucidate the special features of the mammalian fetal Leydig cell population, which presents an intriguing experimental model for studies of function and regulation of steroidogenic cells.  相似文献   

20.
The longer ago the hypophysectomy has been performed, the more marked is Leydig cell atrophy in the testis. The effects of HCG on cellular morphology have been observed in vivo and in organ culture; qualitative quantitative and ultrastructural aspects were studied. In vivo, the effects of a daily injection of gonadotropin on the testis of 2 boars hypophysectomized 3 1/2 months ago are shown. Markedly atrophied cells are strongly stimulated by HCG during the 15 first days (the cell and nucleus recover nearly to standard size, with the typical histological and ultrastructural appearance with all the cell organelles which characterize a functional steroid cell). Then after 1 1/2 month injection it decreases again to the initial state (very small size cytoplasm strongly reduced with very low organelle content). The number of the Leydig cells is maintained during the first 15 days, then it progressively decreases. The effects of HCG on the testicular tissue of 4 boars were studied in organ culture. Interstitial tissue with a greater or lesser degree of atrophy was examined experimentally (1 month, 3 months and 4 months after hypophysectomy) in order to prove a possible irreversibility of the effects of hypophysectomy. In each case, cell changes were studied according to the duration of the culture. Control cultures without HCG in the medium were set up simultaneously. 1 month and/or 3 months after hypophysectomy, the Leydig cells in culture progressively recover the size and the histological and ultrastructural appearances of a typical Leydig cell. After 16 days of culture, the stimulation is highest, as in vivo. The number of Leydig cells is maintained. From the 17th day stimulation decreases and the cell enters a new atrophy phase. In the anhormonal control medium the atrophy continues as long as the culture is maintained, and the number of Leydig cells decreases. 4 months after hypophysectomy, stimulation in culture is still possible during the first 10 days (proved by the same tests); however the size of the cell remains small compared to the normal; then it atrophies again quickly. In this case the hormone does not maintain the number of the Leydig cells. In the control cultures, slight response of the cell is observed, but this effect is limited and disappears a few days later; the number of the cells rapidly decreases. It has been shown that markedly atrophied Leydig cells can highly be stimulated during the first 2 weeks under the influence of HCG as well in vivo as in organ culture. The lability of the effect is not yet explained. 4 months after hypophysectomy, stimulation is not so effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号