首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Angiotensin converting enzyme interacts with the chelator, 1,10-phenanthroline (OP) to form an OP-Zn-ACE ternary complex, which subsequently dissociates to OP-Zn and apoenzyme. The association and dissociation rate constants for the reaction OP + Zn-ACE in equilibrium OP-Zn-ACE have been determined and compared with those of known OP-metal complexes. Such constants were also used to calculate the rate constant for formation of the OP-Zn complex from OP-Zn-ACE. The rate of dissociation of zinc from ACE has been measured in the presence of EDTA (which acts only as a metal scavenger) as a function of chelator concentration, at different pH values, and with different buffers. The stability constant for the binding of zinc to apoACE log Kc = 8.2, determined by equilibrium dialysis using atomic absorption spectroscopy to assess metal concentration, is much smaller than that for Zn-carboxypeptidase A. Zn-thermolysin, or Zn-carbonic anhydrase. This weak binding is attributable to the zinc dissociation rate constant of ACE, 7.5 X 10(-3) sec-1 at pH 7.0, which is much greater than that of the other zinc metalloenzymes. These results lead to inferences regarding the metal binding site of ACE.  相似文献   

2.
The pyridoxal phosphate dependent enzyme D-serine dehydratase has been investigated using 31P nuclear magnetic resonance (NMR) at 72.86 MHz. In the native enzyme, the pyridoxal phosphate 31P chemical shift is pH dependent with pKa = 6.4, indicating exposure of the phosphate group to solvent. Binding of the competitive inhibitor isoserine results in the formation of the isoserine-pyridoxal phosphate complex. This transaldimination complex is fixed to the enzyme via the phosphate group of the cofactor as the dianion, independent of pH. At pH 6.6 the dissociation constant KD for isoserine determined by NMR is 0.43 mM. Reconstitution of the apoenzyme with pyridoxal phosphate monomethyl ester produces an inactive enzyme. NMR and fluorescence measurements show that this enzyme does not form the transaldimination complex, indicating that the fixation of the dianionic phosphate (probably via a salt bridge with an arginine residue) observed in the native enzyme is required for the transaldimination step of the catalytic mechanism.  相似文献   

3.
Tyrosine-225 is hydrogen-bonded to the 3'-hydroxyl group of pyridoxal 5'-phosphate in the active site of aspartate aminotransferase. Replacement of this residue with phenylalanine (Y225F) results in a shift in the acidic limb of the pKa of the kcat/KAsp vs pH profile from 7.1 (wild-type) to 8.4 (mutant). The change in the kinetic pKa is mirrored by a similar shift in the spectrophotometrically determined pKa of the protonated internal aldimine. Thus, a major role of tyrosine-225 is to provide a hydrogen bond that stabilizes the reactive unprotonated form of the internal aldimine in the neutral pH range. The Km value for L-aspartate and the dissociation constant for alpha-methyl-DL-aspartate are respectively 20- and 37-fold lower in the mutant than in the wild-type enzyme, while the dissociation constant for maleate is much less perturbed. These results are interpreted in terms of competition between the Tyr225 hydroxyl group and the substrate or quasi-substrate amino group for the coenzyme. The value of kcat in Y225F is 450-fold less than the corresponding rate constant in wild type. The increased affinity of the mutant enzyme for substrates, combined with the lack of discrimination against deuterium in the C alpha position of L-aspartate in Y225F-catalyzed transamination [Kirsch, J. F., Toney, M. D., & Goldberg, J. M. (1990) in Protein and Pharmaceutical Engineering (Craik, C. S., Fletterick, R., Matthews, C. R., & Wells, J., Eds.) pp 105-118, Wiley-Liss, New York], suggests that the rate-determining step in the mutant is hydrolysis of the ketimine intermediate rather than C alpha-H abstraction which is partially rate-determining in wild type.  相似文献   

4.
The selective reaction of Cys-45 and -82, on the one hand, and Cys-390, on the other, with 3-bromo-1,1,1-trifluoropropanone allows for the probing of these regions of aspartate transaminase in the absence and in the presence of enzymatic ligands by 19F nuclear magnetic resonance (NMR). The 19F chemical shifts of the resonance lines differ for the three cysteines and so does their behavior with pH changes. The resonance signals with chemical shifts at 615 and 800 Hz upfield from trifluoroacetic acid correspond to modified cysteine-82 and -45 and have tentatively been assigned in this order. The 615-Hz resonance is affected by pH changes that fit best the influence of a single ionizing residue. On the 800-Hz line, the pH changes appear to be the influence of a minimum of two ionizing residues. The 19F resonance from modified Cys-390 is pH independent in the pH range 5-9 for the pyridoxal phosphate, pyridoxamine phosphate, and apoenzyme forms of the enzyme. Occupation of the active site by a quasi-enzyme-substrate complex, trifluoromethionine pyridoxyl phosphate, affects the 19F chemical shift of modified Cys-390, making it pH dependent with a pK value of 8.4. The 19F NMR properties of the pyridoxal form of Cys-390-modified enzyme can be used to monitor some ligand interactions with the active-center region. Addition of alpha-ketoglutarate or succinate to the ketone labeled enzyme causes a decrease in the resonance line width, and titrations show that this procedure is a good method with which to study the affinity of the enzyme for these ligands. The interpretation of the chemical shift and line-width characteristics of the 19F resonance arising from Cys-390 are most consistent with a model in which the region around this residue seems to be affected by conformational changes arising from substrate binding to the active-center subsites in productive (covalent) manner. Nonproductive complexes which possess fast ligand-protein exchange, such as those between alpha-ketoglutarate or succinate with the pyridoxal phosphate form of the enzyme, may result only in a greater degree of freedom for Cys-390.  相似文献   

5.
Substituted enzyme (or ping-pong) mechanisms usually involve enzymes that exist in two forms that alternate during the catalytic reaction. A method is described here for determining the position of the equilibrium of a half reaction in a ping-pong enzyme mechanism that is based on the kinetics of the burst reaction which occurs upon addition of reactants that recycle the enzyme from one form to another. The theoretical basis for the analysis is developed, and the method is applied to the half reaction of the aldimine form of aspartate transaminase with difluoro-oxaloacetate. Special issue dedicated to Herman Bachelard  相似文献   

6.
Frontal and zonal analysis of the chromatography of aspartate aminotransferase (EC2.61.1), pig heart cytosolic enzyme, on Bio-Gel P150 shows that holo- and apoenzyme can dissociate at pH 8.3. Ultracentrifugation and fluorescence depolarization confirm this result. Kinetic analysis of the fluorescence depolarization experiments favors a biphasic phenomenon: a few minutes for the faster one and several hours for the slower one. The apparent dissociation constant is 0.8 muM for the apoenzyme and 0.18 muM for the pyridoxal 5'-phosphate form of the holoenzyme. In the presence of sucrose or 0.1 M L-aspartate or a mixture of 70 mM L-glutamate and 2 mM alpha-ketoglutarate, the holoenzyme is dimeric at concentrations higher than 5 nM. The addition of a mixture of the substrates L-glutamate and alpha-ketoglutarate to a monomeric holoenzyme leads to dimerization. The stability of the dimeric form is in the order: holoenzyme + substrates greater than apoenzyme.  相似文献   

7.
1. The fluorescence polarization, P, of FAD increased on complex formation with the apoenzyme of D-amino acid oxidase [D-amino acid: O2 ocidoreductase (deaminating), EC 1.4.3.3]. The time course of the increase was monophasic. The values of P were extimated to be 0.04, 0.4, and 0.4 for FAD, the enzyme and the enzyme-benzoate complex, respectively. 2. The value of P of the enzyme is dependent on its concentration, indicating that the degrees of dissociation of FAD in the monomer and dimer are different. The dissociation constant was calculated to be 7 times 10-minus 7 M for the monomeric form of the enzyme. This value is far larger than the value for the dimeric form of the enzyme, 1 times 10-minus 8 M, calculated from equilibrium dialysis data. 3. Changes in fluorescence polarization of the enzyme due to changes in solution pH or temperature can be explained in terms of the monomer-dimer equilibrium.  相似文献   

8.
Affinity labeling of horse liver alcohol dehydrogenase with iodoacetate in the presence of the activator imidazole has been studied from pH 6.1 to 10.5. The pH profiles for the dissociation constants of iodoacetate from the free enzyme and the enzyme-imidazole complex and of imidazole from the free enzyme and the binary enzyme-iodoacetate complex were determined. The variation with pH of the dissociation constants of iodoacetate (KI) and imidazole (KL) have in common a pKa of 8.6 assigned to the zinc-water ionization, and a pKa near 10. Lysine modification by ethyl acetimidate results in a higher affinity of iodoacetate to the enzyme at high pH as the pKa values of the lysine residues are increased. The binding of iodoacetate and imidazole at each enzyme subunit shows negative cooperativity at pH less than 9, with an interaction constant of 4.8 at pH 6.1. Positive cooperativity is observed at pH greater than 9, with an interaction constant of 0.5 at pH 10.5. The pH-dependent change in cooperativity results from the removal of the zinc-water ionization when imidazole becomes coordinated to the catalytic zinc ion. When iodoacetate binds at the anion binding site, a large perturbation of the zinc-water ionization is observed. Unlike imidazole, the binding of 1,10-orthophenanthroline and iodoacetate shows positive cooperativity at both pH 8.2 and 10.0 with an interaction constant as low as 0.06 at pH 10.0.  相似文献   

9.
The reactivity and the mode of activation of the essential--SH group (Cys-149) of D-glyceraldehyde-3-phosphate dehydrogenase have been studied by means of a spectrophotometric method [Polgár, L., FEBS Lett. 38, 187-190 (1974)], capable of detecting the dissociated form of the thiol group in proteins. Alkylations of Cys-149 of NAD-free D-glyceraldehyde-3-phosphate dehydrogenase with iodoacetamide and iodoacetate were investigated. The corrected absorbance change on alkylation at 250 nm (which is a direct parameter of the dissociation of the thiol group) and the alkylation rate were determined as a function of pH. The pH profiles of both dissociation and alkylation rate of Cys-149 conform to doubly sigmoid curves. All these curves implicate two ionizing groups (pK1 equals 5.5, pK2 equals 8.2). It is concluded that there are two reactive forms of the--SH group in the apoenzyme between pH 5 and 10. One reactive form corresponds to the free mercaptide ion. The other can be identified with an ion-pair composed of a mercaptide ion and some base, possibly the imidazolium group of His-176. The ion-pair has lower molar absorption coefficient and nucleophilicity than the free mercaptide ion. The two reactive forms are transformed into each other with pK2 equals 8.2. The ion-pair decomposes to a nondissociated thiol group and a protonated base with pK1 equals 5.5. In the presence of NAD, only the pH-rate profile of alkylation of D-glyceraldehyde-3-phosphate dehydrogenase was measured (at 370 nm). Using iodoacetamide as alkylating agent we also obtained a doubly sigmoid curve. A slight downward shift on pK1 and an upward shift in pK2 indicate that the ion-pair exists in a somewhat wider pH-range in the enzyme-coenzyme complex. An increase in the ionic strength of the reaction mixture from 0.09 to 0.45 M does not abolish the doubly sigmoid character of the curves determined either in the presence or in the absence of NAD.  相似文献   

10.
Inactivation of apo-glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase(phosphorylating) (EC 1.2.1.12) from rat skeletal muscle at 4 degrees C in 0.15 M NaC1, 5 mM EDTA, 4 mM 2-mercaptoethanol pH 7.2 is a first-order reaction. The rate constant of inactivation depends on protein concentration. With one molecule of NAD bound per tetrameric enzyme, a 50 per cent loss in activity is observed and the rate constant of inactivation becomes independent of the protein concentration over a 30-fold range. Two moles of NAD bound per mole of enzyme fully protect it against inactivation. NADH affords a cooperative effect on enzyme structure similar to that of NAD. Inactivation of 7.8 S apoenzyme is reflected in its dissociation into 4.8-S dimers. In the case of enzyme-NAD1 complex, no direct relationship between the extent of inactivation and dissociation is observed, suggesting that these two processes do not occur simultaneously; we may say that dissociation is slower than inactivation. A mechanism in which the rate-limiting step for inactivation is a conformational change in the tetramer occurring prior to dissociation and affecting only the structure of the non-liganded dimer, is consistent with the experimental observations. Inorganic phosphate protects apoenzyme against inactivation. Its effect is shown to be due to the anion binding at specific sites on the protein with a dissociation constant of 2.6 plus or minus 0.4 mM. The NaC1-induced cold inactivation of glyceraldehyde-phosphate dehydrogenase is fully reversible at 25 degrees C in the presence of 20 mM dithiothreitol and 50 mM inorganic phosphate. The rate of reactivation is independent of protein concentration. Inactivated enzyme retains the ability to bind specific antibodies produced in rabbits, but diminishes its precipitating capability.  相似文献   

11.
Glycerol trinitrate reductase (NerA) from Agrobacterium radiobacter, a member of the old yellow enzyme (OYE) family of oxidoreductases, was expressed in and purified from Escherichia coli. Denaturation of pure enzyme liberated flavin mononucleotide (FMN), and spectra of NerA during reduction and reoxidation confirmed its catalytic involvement. Binding of FMN to apoenzyme to form the holoenzyme occurred with a dissociation constant of ca. 10(-7) M and with restoration of activity. The NerA-dependent reduction of glycerol trinitrate (GTN; nitroglycerin) by NADH followed ping-pong kinetics. A structural model of NerA based on the known coordinates of OYE showed that His-178, Asn-181, and Tyr-183 were close to FMN in the active site. The NerA mutation H178A produced mutant protein with bound FMN but no activity toward GTN. The N181A mutation produced protein that did not bind FMN and was isolated in partly degraded form. The mutation Y183F produced active protein with the same k(cat) as that of wild-type enzyme but with altered K(m) values for GTN and NADH, indicating a role for this residue in substrate binding. Correlation of the ratio of K(m)(GTN) to K(m)(NAD(P)H), with sequence differences for NerA and several other members of the OYE family of oxidoreductases that reduce GTN, indicated that Asn-181 and a second Asn-238 that lies close to Tyr-183 in the NerA model structure may influence substrate specificity.  相似文献   

12.
K Mori  T Toraya 《Biochemistry》1999,38(40):13170-13178
The mechanism of reactivation of diol dehydratase by its reactivating factor was investigated in vitro by using enzyme. cyanocobalamin complex as a model for inactivated holoenzyme. The factor mediated the exchange of the enzyme-bound, adenine-lacking cobalamins for free, adenine-containing cobalamins through intermediate formation of apoenzyme. The factor showed extremely low but distinct ATP-hydrolyzing activity. It formed a tight complex with apoenzyme in the presence of ADP but not at all in the presence of ATP. Incubation of the enzyme.cyanocobalamin complex with the reactivating factor in the presence of ADP brought about release of the enzyme-bound cobalamin, leaving the tight apoenzyme-reactivating factor complex. Although the resulting complex was inactive even in the presence of added adenosylcobalamin, it dissociated by incubation with ATP, forming the apoenzyme, which was reconstitutable into active holoenzyme with added coenzyme. Thus, it was established that the reactivation of the inactivated holoenzyme by the factor in the presence of ATP and Mg2+ takes place in two steps: ADP-dependent cobalamin release and ATP-dependent dissociation of the apoenzyme.factor complex. ATP plays dual roles as a precursor of ADP in the first step and as an effector to change the factor into the low-affinity form for diol dehydratase. The enzyme-bound adenosylcobalamin was also susceptible to exchange with free adeninylpentylcobalamin, although to a much lesser degree. The mechanism for discrimination of adenine-containing cobalamins from adenine-lacking cobalamins was explained in terms of formation equilibrium constants of the cobalamin.enzyme.reactivating factor ternary complexes. We propose that the reactivating factor is a new type of molecular chaperone that participates in reactivation of the inactivated enzymes.  相似文献   

13.
The molecular weights of different aggregational states of phosphoenolpyruvate carboxylase purified from the leaves of Zea mays have been determined by measurement of the molecular diameter using a Malvern dynamic light scattering spectrometer. Using these data to identify the monomer, dimer, tetramer, and larger aggregate(s) the effect of pH and various ligands on the aggregational equilibria of this enzyme have been determined. At neutral pH the enzyme favored the tetrameric form. At both low and high pH the tetramer dissociated, followed by aggregation to a "large" inactive form. The order of dissociation at least at low pH appeared to be two-step: from tetramer to dimers followed by dimer to monomers. The monomers then aggregate to a large aggregate, which is inactive. The presence of EDTA at pH 8 protected the enzyme against both inactivation and large aggregate formation. Dilution of the enzyme at pH 7 at room temperature results in driving the equilibrium from tetramer to dimer. The presence of malate with EDTA stabilizes the dimer as the predominant form at low protein concentrations. The presence of the substrate phosphoenolpyruvate alone and with magnesium and bicarbonate induced formation of the tetramer, and decreased the dissociation constant (Kd) of the tetrameric form. The inhibitor malate, however, induced dissociation of the tetramer as evidenced by an increase in the Kd of the tetramer.  相似文献   

14.
Addition of difluoro-oxaloacetate to the aminic form of aspartate transaminase causes a rapid shift of absorbance maximum of the enzyme from 332 nm to 328 nm, followed by a much slower shift to 360 nm corresponding to complete conversion of the aminic form of the enzyme into the aldimine form or a species with similar spectral parameters in rapid equilibrium with it. Kinetic analysis of both the initial fast reaction and the overall slow reaction by using repeated spectral scanning and stopped-flow techniques allows formulation of a basic reaction mechanism involving at least two intermediate enzyme complexes. Computer simulation of the progress curves of the initial fast reaction based on the suggested reaction mechanism gives kinetic parameters that are consistent with all the data obtained by other methods. A molecular reaction scheme involving a ketimine Schiff-base intermediate is proposed.  相似文献   

15.
The interaction of pyridoxal 5-phosphate with beef liver serine hydroxymethyltransferase (5,10-methylenetetrahydrofolate:glycine hydroxymethyltransferase, EC 2.1.2.1) has been investigated using sedimentation velocity, kinetic and equilibrium techniques. No evidence for an aggregating system could be found in sedimentation velocity experiments in the presence or absence of pyridoxal 5-phosphate. Reassociation of pyridoxal 5-phosphate with apoenzyme and reacquisition of enzymic activity follow identical kinetics. An initial fast step is followed by a second order process with a rate constant of 66 M-1. s-1. A dissociation constant of 27.5 micrometer was obtained from equilibrium studies. No interaction of binding sites was exposed by altering pH or in the presence of glycine or folate. Maxima observed in pH profiles with both binding and reactivation are interpreted as the composite fo two overlapping processes, one of which is ionization of the pyridinium nitrogen of pyridoxal 5-phosphate and the other a functional group on the apoenzyme. Evidence is presented to indicate the necessity for the formation of an enzyme . pyridoxal 5-phosphate Schiff's base complex during catalytic turnover.  相似文献   

16.
Escherichia coli alkaline phosphatase (EC 3.1.3.1) is reversibly inhibited by a variety of phenylarsonic acids, including some N-haloacetylated derivatives. The inhibition is of the competitive type, and Ki values are reported. The action on the enzyme of one of the arsonate inhibitors, the azo dye, 4-(4-aminophenylazo)-phenylarsonic acid was studied in detail, using spectrophotometric and kinetic methods. The azo dye binds more strongly to E. coli alkaline phosphatase than do the other arsonates. Spectrophotometric titration indicates the presence of a single, strong dye-binding site on the enzyme dimer molecule in the concentration range covered. In 0.1 M Tris - HCl buffer pH 8.0, 25 degrees C K diss for the dye - enzyme complex is 1.50 - 10(-5) M as determined by spectrophotometric titration. This value is in good agreement with the Ki = 1.30 - 10(-5) M obtained from kinetic measurements. The dye can be displaced from alkaline phosphatase by phosphate and competitive inhibitor 2-aminoethyl phosphonate. These results indicate that the dye binds with its arsonic acid group to the anion binding site of the active site of the enzyme. The binding of the dye to the native enzyme is associated with a red shift in the visible spectrum of the dye. It seems that the aromatic portion of the dye interacts with a hydrophobic region close to the anion binding site. The spectrum of the dye is not changed in the presence of the apoenzyme. When zinc is added to an apoenzyme-dye solution, the spectral changes of the dye depend on both the ratio of zinc per apoenzyme and the pH. The presence of Mg2+ had no effect on the observed phenomenon.  相似文献   

17.
The equilibrium constant for the dissociation of zinc ion from angiotensin-converting enzyme (ACE) was measured using zinc ion buffers of zinc chloride and nitrilotriacetic acid (NTA). The dissociation constant is 6.4 X 10(-10) M. The fraction of active enzyme at equilibrium is independent of the presence of substrate which indicates that hippuryl-histidylleucine binds equally well to the holoenzyme and apoenzyme. The rate constant for the dissociation of zinc from ACE was measured as 0.68 min-1 for the free enzyme; the rate constant for the enzyme substrate complex was roughly 0.18 min-1. The association of zinc ion and ACE is very fast; the rate constant is 1.06 X 10(9) M-1 min-1. Ethylenediaminetetraacetic acid (EDTA) and NTA rapidly remove zinc from ACE with rate constants of 1.27 X 10(3) and 2.2 X 10(3) M-1 min-1. The equilibrium constant for the reaction of NTA with ACE was measured as 4.6 X 10(-2) and was calculated for EDTA as 3.8 X 10(3).  相似文献   

18.
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.  相似文献   

19.
Pyridoxine deficiency caused a decrease in the amount of aromatic L-amino acid decarboxylase (AADC) in PC12 cells to less than 5% of the control. The degree of the enzyme saturation with the coenzyme pyridoxal 5'-phosphate (PLP) was around 90% for both the control and the pyridoxine-deficient cells, contrary to earlier reports by others. Mathematical analysis of the result indicated that the AADC apoenzyme is degraded at least 20-fold faster than the holoenzyme in the cells. To determine the mechanism of the preferential degradation of the apoenzyme, in vitro model studies were carried out. AADC has a flexible loop that covers the active site. This loop was easily leaved by proteases at similar rates for both the holoenzyme and the apoenzyme. However, in the presence of the substrate analog, dopa methyl ester, the holoenzyme was not cleaved by proteases, while the apoenzyme was cleaved similarly. These results indicated that the ligand that forms a Schiff base (aldimine) with PLP is fixed to the active site and stabilizes the flexible loop. The structure of the rat AADC-dopa complex modeled on the crystal structure of pig AADC showed that the flexible loop can fit in the concave surface at the entrance of the active site, its aliphatic and aromatic residues forming hydrophobic interactions with the substrate catechol ring. It was postulated that the flexible loop of the holoenzyme is stabilized in vivo by taking a closed structure that holds the PLP-substrate aldimine, while the apoenzyme cannot bind the substrate and its flexible loop is easily cleaved, leading to the preferential degradation of the apoenzyme.  相似文献   

20.
C H Tai  P Burkhard  D Gani  T Jenn  C Johnson  P F Cook 《Biochemistry》2001,40(25):7446-7452
A new crystal structure of the A-isozyme of O-acetylserine sulfhydrylase-A (OASS) with chloride bound to an allosteric site located at the dimer interface has recently been determined [Burkhard, P., Tai, C.-H., Jansonius, J. N., and Cook, P. F. (2000) J. Mol. Biol. 303, 279-286]. Data have been obtained from steady state and presteady-state kinetic studies and from UV-visible spectral studies to characterize the allosteric anion-binding site. Data obtained with chloride and sulfate as inhibitors indicate the following: (i) chloride and sulfate prevent the formation of the external aldimines with L-cysteine or L-serine; (ii) chloride and sulfate increase the external aldimine dissociation constants for O-acetyl-L-serine, L-methionine, and 5-oxo-L-norleucine; (iii) chloride and sulfate bind to the allosteric site in the internal aldimine and alpha-aminoacrylate external aldimine forms of OASS; (iv) sulfate also binds to the active site. Sulfide behaves in a manner identical to chloride and sulfate in preventing the formation of the L-serine external aldimine. The binding of chloride to the allosteric site is pH independent over the pH range 7-9, suggesting no ionizable enzyme side chains ionize over this pH range. Inhibition by sulfide is potent (K(d) is 25 microM at pH 8) suggesting that SH(-) is the physiologic inhibitory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号