首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioactive lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have diverse effects on the developing nervous system and neural progenitors, but the molecular basis for their pleiotropic effects is poorly understood. We previously defined LPA and S1P signaling in proliferating human neural progenitor (hNP) cells, and the current study investigates their role in neuronal differentiation of these cells. Differentiation in the presence of LPA or S1P significantly enhanced cell survival and decreased expression of neuronal markers. Further, the LPA receptor antagonist Ki16425 fully blocked the effects of LPA, and differentiation in the presence of Ki16425 dramatically enhanced neurite length. LPA and S1P robustly activated Erk, but surprisingly both strongly suppressed Akt activation. Ki16425 and pertussis toxin blocked LPA activation of Erk but not LPA inhibition of Akt, suggesting distinct receptor and G-protein subtypes mediate these effects. Finally, we explored cross talk between lysophospholipid signaling and the cytokine leukemia inhibitory factor (LIF). LPA/S1P effects on neuronal differentiation were amplified in the presence of LIF. Similarly, the ability of LPA/S1P to regulate Erk and Akt was impacted by the presence of LIF; LIF enhanced the inhibitory effect of LPA/S1P on Akt phosphorylation, while LIF blunted the activation of Erk by LPA/S1P. Taken together, our results suggest that LPA and S1P enhance survival and inhibit neuronal differentiation of hNP cells, and LPA1 is critical for the effect of LPA. The pleiotropic effects of LPA may reflect differences in receptor subtype expression or cross talk with LIF receptor signaling.  相似文献   

2.
Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA(1)-LPA(5). In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or "primed," by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA(1)-LPA(4). Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (LPA(1)((-/-))/LPA(2)((-/-))). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.  相似文献   

3.
Neurite retraction is a crucial process during nervous system development and neurodegeneration. This process implies reorganization of the neuronal cytoskeleton. Some bioactive lipids such as lysophosphatidic acid (LPA) induce neurite retraction. The reorganization of the actin cytoskeleton during neurite retraction is one of the best-characterized effects of LPA. However, less information is available regarding the reorganization of the microtubule (MT) network in response to LPA in neuronal cells. Here, we first give an overview of the roles of cytoskeleton during neurite outgrowth, and subsequently, we review some of the data from different laboratories concerning LPA-induced cytoskeletal rearrangement in neuronal cells. We also summarize our own recent results about modifications of MTs during LPA-induced neurite retraction. We have shown that LPA induces changes in tubulin pools and increases in the phosphorylation levels of microtubule-associated proteins (MAPs), such as Tau. Tau hyperphosphorylation in response to LPA is mediated by the activation of glycogen synthase kinase-3 (GSK-3). The upregulation of GSK-3 activity by LPA seems to be a general process as it occurs in diverse neuronal cells of different species in correlation with the neurite retraction process.  相似文献   

4.
Lysophosphatidic acid (LPA) is a potent lipid mediator that evokes a variety of biological responses in many cell types via its specific G protein-coupled receptors. In particular, LPA affects cell morphology, cell survival, and cell cycle progression in neuronal cells. Recently, we identified p2y(9)/GPR23 as a novel fourth LPA receptor, LPA(4) (Noguchi, K., Ishii, S., and Shimizu, T. (2003) J. Biol. Chem. 278, 25600-25606). To assess the functions of LPA(4) in neuronal cells, we used rat neuroblastoma B103 cells that lack endogenous responses to LPA. In B103 cells stably expressing LPA(4), we observed G(q/11)-dependent calcium mobilization, but LPA did not affect adenylyl cyclase activity. In LPA(4) transfectants, LPA induced dramatic morphological changes, i.e. neurite retraction, cell aggregation, and cadherin-dependent cell adhesion, which involved Rho-mediated signaling pathways. Thus, our results demonstrated that LPA(4) as well as LPA(1) couple to G(q/11) and G(12/13), whereas LPA(4) differs from LPA(1) in that it does not couple to G(i/o). Through neurite retraction and cell aggregation, LPA(4) may play a role in neuronal development such as neurogenesis and neuronal migration.  相似文献   

5.
The LPA receptors   总被引:6,自引:0,他引:6  
Lysophosphatidic acid (LPA) is a growth factor-like lipid that produces many cellular responses. These responses, including actin cytoskeletal rearrangements, cell proliferation and inhibition of gap junction communication, have been documented in many cell types over the last 2 decades. Both non-receptor and receptor-mediated mechanisms had been implicated to explain these responses. A clear advance in this field was the cloning and functional identification of LPA receptors, and there are currently three high-affinity members, LPA1, LPA2 and LPA3 (synonymous with orphan receptor names edg-2, edg-4 and edg-7, respectively). Here we review the gene structure, expression and functions of LPA receptors. We also discuss the in vivo roles mediated by a single LPA receptor type, based on studies of the nervous system, a major locus of LPA receptor expression.  相似文献   

6.
Since the molecular cloning of the vzg-1/Edg-2/LPA1 gene, studies have attempted to characterize LPA1 receptor functionality into a single categorical role, different from the other Edg-family LPA receptors. The desire to categorize LPA1 function has highlighted its complexity and demonstrated that the LPA1 receptor does not have one absolute function throughout every system. The central nervous system is highly enriched in the LPA1 receptor, suggesting an integral role in neuronal processes. Metastatic and invasive breast cancer also appears to have LPA-mediated LPA1 receptor functions that enhance phenotypes associated with tumorigenesis. LPA1 possesses a number of motifs conserved among G protein-coupled receptors (GPCRs): a DRY-like motif, a PDZ domain, Ser/Thr predicted sites of phosphorylation, a di-leucine motif, double cysteines in the tail and conserved residues that stabilize structure and determine ligand binding. The third intracellular loop of the LPA1 receptor may be the crux of receptor signaling and attenuation with phosphorylation of Thr-236 potentially a key determinant of basal LPA1 signaling. Mutagenesis data supports the notion that Thr-236 regulates this process since mutating Thr-236 to Ala-236 increased basal and LPA-mediated serum response factor (SRF) signaling activity and Lys-236 further increased this basal signaling. Here we describe progress on defining the major functions of the LPA1 receptor, discuss a context dependent dualistic role as both a negative regulator in cancer and a proto-oncogene, outline its structural components at the molecular amino acid level and present mutagenesis data on the third intracellular loop of the receptor.  相似文献   

7.
Fukushima N  Chun J 《Prostaglandins》2001,64(1-4):21-32
Lysophosphatidic acid (LPA) is a growth factor-like lipid that produces many cellular responses. These responses, including actin cytoskeletal rearrangements, cell proliferation and inhibition of gap junction communication, have been documented in many cell types over the last 2 decades. Both non-receptor and receptor-mediated mechanisms had been implicated to explain these responses. A clear advance in this field was the cloning and functional identification of LPA receptors, and there are currently three high-affinity members, LP(A1), LP(A2) and LP(A3) (synonymous with orphan receptor names edg-2, edg-4 and edg-7, respectively). Here we review the gene structure, expression and functions of LPA receptors. We also discuss the in vivo roles mediated by a single LPA receptor type, based on studies of the nervous system, a major locus of LPA receptor expression.  相似文献   

8.
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates nervous system development and functions through multiple types of LPA receptors. Here we explore the role of LPA receptor subtypes in cortical astrocyte functions. Astrocytes cultured under serum-free conditions were found to express the genes of five LPA receptor subtypes, lpa1 to lpa5. When astrocytes were treated with dibutyryl cyclic adenosine monophosphate, a reagent inducing astrocyte differentiation or activation, lpa1 expression levels remained unchanged, but those of other LPA receptor subtypes were relatively reduced. LPA stimulated DNA synthesis in both undifferentiated and differentiated astrocytes, but failed to do so in astrocytes prepared from mice lacking lpa1 gene. LPA also inhibited [3H]-glutamate uptake in both undifferentiated and differentiated astrocytes; and LPA-induced inhibition of glutamate uptake was still observed in lpa1-deficient astrocytes. Taken together, these observations demonstrate that LPA1 mediates LPA-induced stimulation of cell proliferation but not inhibition of glutamate uptake in astrocytes.  相似文献   

9.
Autotaxin (ATX) is a secreted glycoprotein widely present in biological fluids, originally isolated from the supernatant of melanoma cells as an autocrine motility stimulation factor. Its enzymatic product, lysophosphatidic acid (LPA), is a phospholipid mediator that evokes growth-factor-like responses in almost all cell types through G-protein coupled receptors. To assess the role of ATX and LPA signalling in pathophysiology, a conditional knockout mouse was created. Ubiquitous, obligatory deletion resulted to embryonic lethality most likely due to aberrant vascular branching morphogenesis and chorio-allantoic fusion. Moreover, the observed phenotype was shown to be entirely depended on embryonic, but not extraembryonic or maternal ATX expression. In addition, E9.5 ATX null mutants exhibited a failure of neural tube closure, most likely independent of the circulatory failure, which correlated with decreased cell proliferation and increased cell death. More importantly, neurite outgrowth in embryo explants was severely compromised in mutant embryos but could be rescued upon the addition of LPA, thus confirming a role for ATX and LPA signalling in the development of the nervous system. Finally, expression profiling of mutant embryos revealed attenuated embryonic expression of HIF-1a in the absence of ATX, suggesting a novel effector pathway of ATX/LPA.  相似文献   

10.
Lysophosphatidic acid (LPA) is a naturally occurring phospholipid with hormone- and growth factor-like activities. Exogenous LPA stimulates GTP-dependent phosphoinositide hydrolysis and inhibits adenylate cyclase in its target cells, but the site of action of LPA is unknown. We now report the identification by photoaffinity labeling of a putative LPA membrane receptor in various LPA-responsive cell types. A 32P-labeled LPA analogue containing a photoreactive fatty acid, [32P]diazirine-LPA, labels a membrane protein of apparent molecular mass of 38-40 kDa in various cell types, including neuronal cells, brain homogenates, carcinoma cells, leukemic cells and normal fibroblasts. Labeling of the 38-40 kDa protein is competitively inhibited by unlabeled 1-oleoyl-LPA (IC50 approximately 10 nM), but not by other phospholipids. Specific labeling is not detected in rat liver membranes or in human neutrophils, which are physiologically unresponsive to LPA. Suramin, an inhibitor of both early and late events in the action of LPA, completely inhibits the binding of photoreactive LPA. We suggest that the 38-40 kDa protein represents a specific LPA cell surface receptor mediating at least part of the multiple cellular responses to LPA.  相似文献   

11.
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates cortical development. Here we examined how LPA influences the cell fate of cortical neuroblasts using a neurosphere culture system. We generated neurospheres in the presence of basic fibroblast growth factor (bFGF). Treatment with LPA throughout the culture period significantly reduced the number of cells in the neurospheres. When dissociated single cells derived from neurospheres were induced to differentiate by adherence on coverslips, the proportion of MAP2-positive neurons was higher in LPA-treated neurospheres than in those treated with bFGF alone, and the proportion of myelin basic protein-positive oligodendrocytes was lower. Consistent with this finding, LPA raised the ratio of beta-tubulin type III-positive young neurons and reduced the ratio of CD140a-positive oligodendrocyte precursors in neurospheres. These effects of LPA were inhibited by pretreatment of neurospheres with pertussis toxin or an LPA(1)-preferring antagonist, Ki16425. Moreover, LPA-induced enhancement of neuronal differentiation was not observed in neurospheres derived from lpa(1)-null mice. These results suggest that LPA promotes the commitment of neuroblasts to the neural lineage through the LPA(1)-G(i/o) pathway.  相似文献   

12.
Rapid neurite remodeling is fundamental to nervous system development and plasticity and is regulated by Rho family GTPases that signal f-actin reorganization in response to various receptor ligands. Neuronal N1E-115 cells show dramatic neurite retraction and cell rounding in response to serum factors such as lysophosphatidic acid (LPA), sphingosine-1 phosphate (S1P), and thrombin, due to activation of the RhoA-Rho kinase pathway. Type I phosphatidylinositol 4-phosphate 5-kinases (PIPkinase), which regulate cellular levels of PtdIns(4,5)P(2), have been suggested as targets of the RhoA-Rho kinase pathway able to modulate cytoskeletal dynamics. Here, we show that the introduction of Type Ialpha PIPkinase into N1E-115 cells leads to cell rounding and complete inhibition of neurite outgrowth, perhaps through the dissociation of vinculin and the destabilization of focal adhesions. This occurs independently of RhoA, Rho kinase, and the activation of actomyosin contraction. Strikingly, expression of kinase-dead PIPkinase promotes the outgrowth of neurites, which fail to retract in response to LPA, S1P, thrombin, or active RhoA. Moreover, neurite retraction in response to an endogenous neuronal guidance cue, Semaphorin3A, was also dependent on Type Ialpha PIPkinase. Our results suggest an essential role for a Type I PIPkinase during neurite retraction in response to a number of diverse stimuli.  相似文献   

13.
Lysophosphatidic Acid Induces Necrosis and Apoptosis in Hippocampal Neurons   总被引:11,自引:1,他引:10  
Abstract: A diverse body of evidence indicates a role for the lipid biomediator lysophosphatidic acid (LPA) in the CNS. This study identifies and characterizes the induction of neuronal death by LPA. Treatment of cultured hippocampal neurons from embryonic rat brains with 50 µ M LPA resulted in neuronal necrosis, as determined morphologically and by the release of lactate dehydrogenase. A concentration of LPA as low as 10 µ M led to the release of lactate dehydrogenase. In contrast, treatment of neurons with 0.1 or 1.0 µ M LPA resulted in apoptosis, as determined by chromatin condensation. In addition, neuronal death induced by 1 µ M LPA was characterized as apoptotic on the basis of terminal dUTP nick end-labeling (TUNEL) staining, externalization of phosphatidylserine, and protection against chromatin condensation, TUNEL staining, and phosphatidylserine externalization by treatment with N -benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad-spectrum inhibitor of caspases, i.e., members of the interleukin-1β converting enzyme family. Studies with antagonists of ionotropic glutamate receptors did not indicate a significant role for these receptors in apoptosis induced by 1 µ M LPA. LPA (1 µ M ) also induced a decrease in mitochondrial membrane potential. Moreover, pretreatment of neurons with cyclosporin A protected against the LPA-induced decrease in mitochondrial membrane potential and neuronal apoptosis. Thus, LPA, at pathophysiological levels, can induce neuronal apoptosis and could thereby participate in neurodegenerative disorders.  相似文献   

14.
Rat brain was found to contain substantial amounts of potent bioactive lipids lysophosphatidic acid (acyl LPA) (3.73 nmol/g tissue) and lysoplasmanic acid (alkyl LPA) (0.44 nmol/g tissue). The presence of alkyl LPA was confirmed by mild alkaline hydrolysis analysis and by gas chromatography/mass spectrometry analysis of the trimethylsilyl derivative. This is the first clear evidence of the occurrence of an alkyl LPA in nature. The predominant molecular species of acyl LPA are 18:1-, 18:0- and 16:0-containing species (46. 9, 22.5 and 18.8%, respectively). A significant amount of a 20:4-containing species (7.2%) was also detected in the acyl LPA fraction. We also confirmed that rat brain alkyl LPA consists of 16:0-, 18:0- and 18:1-containing species. Noticeably, either acyl or alkyl LPA is capable of stimulating neuroblastomaxglioma hybrid NG108-15 cells to elicit a Ca(2+) transient, the potencies being almost the same. Both acyl and alkyl LPAs also induce cell rounding upon addition to the cells. These results suggest that acyl and alkyl LPAs play important physiological roles as intercellular signaling molecules as well as the roles as metabolic intermediates in the nervous system.  相似文献   

15.
Neuronal cell death happens as a result of the normal physiological process that occurs during development, or as part of the pathological process that occurs during disease. Death-associated protein kinase (DAPK) is an intracellular protein that mediates cell death by its serine/threonine kinase activity, and transmits apoptotic cell death signals in various cells, including neurons. DAPK is elevated in injured neurons in acute models of injury such as ischemia and seizure. The absence of DAPK has been shown to protect neurons from a wide variety of acute toxic insults. Moreover, DAPK also regulates neuronal cell death during central nervous system development. Neurons are initially overproduced in the developing nervous system, following which approximately one-half of the original cell population dies. This “naturally-occurring” or “programmed” cell death is essential for the construction of the developing nervous system. In this review, we focus on the role of DAPK in neuronal cell death after neuronal injury. The participation of DAPK in developmental neuronal death is also explained.  相似文献   

16.
17.
Hirota K  Murata M  Itoh T  Yodoi J  Fukuda K 《FEBS letters》2001,489(2-3):134-138
Lysophosphatidic acid (LPA) is the smallest and simplest of all the glycerophospholipids that activates a specific GTP-binding protein coupled receptor to evoke multiple cellular responses. In this paper, we have demonstrated that LPA stimulates nuclear factor (NF)-kappaB-dependent gene induction in a neuronal cell line, NG108-15 and that this is under redox regulation by an endogenous molecule, thioredoxin. We also have shown that redox-sensitive transactivation of epidermal growth factor receptor by LPA confers NF-kappaB activation and small GTPase proteins are involved in this pathway.  相似文献   

18.
Cell lineage in the developing neural tube.   总被引:12,自引:0,他引:12  
Acquisition of cell type specific properties in the spinal cord is a process of sequential restriction in developmental potential. A multipotent stem cell of the nervous system, the neuroepithelial cell, generates central nervous system and peripheral nervous system derivatives via the generation of intermediate lineage restricted precursors that differ from each other and from neuroepithelial cells. Intermediate lineage restricted neuronal and glial precursors termed neuronal restricted precursors and glial restricted precursors, respectively, have been identified. Differentiation is influenced by extrinsic environmental signals that are stage and cell type specific. Analysis in multiple species illustrates similarities between chick, rat, mouse, and human cell differentiation. The utility of obtaining these precursor cell types for gene discovery, drug screening, and therapeutic applications is discussed.  相似文献   

19.
Lysophosphatidic acid (LPA) is released from platelets following injury and also plays a role in neural development but little is known about its effects in the adult central nervous system (CNS). We have examined the expression of LPA receptors 1-3 (LPA1–3) in intact mouse spinal cord and cortical tissues and following injury. In intact and injured tissues, LPA1 was expressed by ependymal cells in the central canal of the spinal cord and was upregulated in reactive astrocytes following spinal cord injury. LPA2 showed low expression in intact CNS tissue, on grey matter astrocytes in spinal cord and in ependymal cells lining the lateral ventricle. Following injury, its expression was upregulated on astrocytes in both cortex and spinal cord. LPA3 showed low expression in intact CNS tissue, viz. on cortical neurons and motor neurons in the spinal cord, and was upregulated on neurons in both regions after injury. Therefore, LPA1–3 are differentially expressed in the CNS and their expression is upregulated in response to injury. LPA release following CNS injury may have different consequences for each cell type because of this differential expression in the adult nervous system.  相似文献   

20.
Glial cells   总被引:13,自引:0,他引:13  
The nervous system is built from two broad categories of cells, neurones and glial cells. The glial cells outnumber the neurones and the two cell types occupy a comparable amount of space in nervous tissue. The main glial cell types are, in the central nervous system, astrocytes and oligodendrocytes and, in the peripheral nervous system, Schwann cells, enteric glial cells and satellite cells. In the embryo, glial cells form a cellular framework that permits the development of the rest of the nervous system, and regulate neuronal survival and differentiation. The best known function of glia in the adult is the formation of myelin sheaths around axons thus allowing the fast conduction of signalling essential for nervous system function. Glia also maintain appropriate concentrations of ions and neurotransmitters in the neuronal environment. Increasing body of evidence indicates that glial cells are essential regulators of the formation, maintenance and function of synapses, the key functional unit of the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号