首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human hepatitis delta virus (HDV) RNA has been shown to contain a self-catalyzed cleavage activity. The sequence requirement for its catalytic activity appears to be different from that of other known ribozymes. In this paper, we define the minimum contiguous sequence and secondary structure of the HDV genomic RNA required for the catalytic activity. By using nested-set deletion mutants, we have determined that the essential sequence for the catalytic activity is contained within no more than 85 nucleotides of HDV RNA. These results are in close agreement with the previous determinations and confirmed the relative insignificance of the sequence at the 5' side of the cleavage site. The smallest catalytic RNA, representing HDV genomic RNA nucleotide positions 683 to 770, was used as the basis for studying the secondary structure requirements for catalytic activity. Analysis of the RNA structure, using RNase V1, nuclease S1 and diethylpyrocarbonate treatments showed that this RNA contains at least two stem-and-loop structures. Other larger HDV RNA subfragments containing the catalytic activity also have a very similar secondary structure. By performing site-specific mutagenesis studies, it was shown that one of the stem-and-loop structures could be deleted to half of its original size without affecting the catalytic activity. In addition, the other stem-and-loop contained a six base-pair helix, and the structure, rather than the sequence, of this helix was required for the catalytic activity. However, the structure of a portion of the stem-and-loop remains uncertain. We also report that this RNA can be divided into two separate molecules, which alone did not have cleavage activity but, when mixed, one of the RNAs could be cleaved in trans. This study thus reveals some features of the secondary structure of the HDV genomic RNA involved in self-catalyzed cleavage. A model of this RNA structure is presented.  相似文献   

2.
3.
L Sharmeen  M Y Kuo    J Taylor 《Journal of virology》1989,63(3):1428-1430
A 179-base fragment of RNA from the 1,679-base antigenome of hepatitis delta virus can not only self-cleave but, when the ends of the resultant fragments are brought into apposition by base pairing to another RNA, also self-ligate. Thus, processing events needed for genome replication in vivo may be strictly RNA mediated.  相似文献   

4.
The structure and replication of the single-stranded circular RNA genome of hepatitis delta virus (HDV) are unique relative to those of known animal viruses, and yet there are real similarities between HDV and certain infectious RNAs of plants. Therefore, since some of the latter RNAs have been shown to undergo in vitro site-specific cleavage and even ligation, we tested the hypothesis that similar events might also occur for HDV RNA. In partial confirmation of this hypothesis, we found that in vitro the RNA complementary to the HDV genome, the antigenomic RNA, could undergo a self-cleavage that was not only more than 90% efficient but also occurred only at a single location. This cleavage was found to produce junction fragments consistent with a 5'-hydroxyl and a cyclic 2',3'-monophosphate. Since the observed cleavage was both site-specific and occurred only once per genome length, we propose that the site may be relevant to the normal intracellular replication of the HDV genome. Because the site is located almost adjacent to the 3' end of the delta antigen-coding region, the only known functional open reading frame of HDV, we suggest that the cleavage may have a role not only in genome replication but also in RNA processing, helping to produce a functional mRNA for the translation of delta antigen.  相似文献   

5.
Self-cleavage efficiency of ribozymes derived from hepatitis delta virus (HDV) has been shown to depend on the RNA structure, which in turn may be determined by the length of the considered sequences. Here we describe the construction and functional analysis of a 71 nucleotide-long RNA genomic fragment, Rz71, which carries an 18 nucleotide deletion in a very stable GC-rich stem-loop (stem IV), predicted to be present in several computer-derived secondary structure models. Rz71 is able to undergo self-cleavage under non-denaturing conditions (the t1/2 of the reaction at 37 degrees C is 3 min). The deletion, however, is not neutral, since under the same conditions the non-deleted ribozyme cleaves to 50% in less than 15 sec. Therefore, stem-loop IV seems to play a structural role, not being directly involved in the catalytic reaction, but contributing to the correct positioning of the catalytic core of the HDV ribozyme. Rz71 is the smallest self-cleaving sub-fragment of HDV genomic RNA reported so far.  相似文献   

6.
7.
For some time it has been known that the RNA genome of human hepatitis delta virus (HDV) undergoes a specific RNA editing event. This review describes the editing phenomenon and its potential biological significance, and evaluates the data regarding the mechanism involved, including the possible relationship to other RNA editing phenomena.  相似文献   

8.
9.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

10.
Mutagenesis analysis of a hepatitis delta virus genomic ribozyme.   总被引:5,自引:4,他引:1       下载免费PDF全文
We conducted extensive mutagenesis analysis on a hepatitis delta virus (HDV) genomic ribozyme to study the sequence specificity of certain region and to derive the secondary structure associated with the catalytic core. The results confirmed that the autocatalytic domain of HDV genomic RNA contained four base-pairing regions as predicted in the 'pseudo-knot' model [Perrotta & Been (1990) Nature 350, 434-436]. The size and sequence of one of the base-pairing regions, i. e. stem-and-loop, could be flexible. Helix 3 and the first basepair of helix 1 required specific sequence to retain self-cleavage activity. The structural requirement of helix 2 was less stringent than the other base-pairing regions. Moreover, the size of helix 1 affected self-cleavage whereas the length of hinge could be variable even though the first three residues of hinge had stringent sequence requirement.  相似文献   

11.
Hepatitis delta virus (HDV) RNA subfragments undergo self-cleavage at varying efficiencies. We have developed a procedure of using repeated cycles of heat denaturation and renaturation of RNA to achieve a high efficiency of cleavage. This effect can also be achieved by gradual denaturation of RNA with heat or formamide. These results suggest that only a subpopulation of the catalytic RNA molecules assumes the active conformation required for self-cleavage. This procedure could be of general use for detecting catalytic RNA activities.  相似文献   

12.
13.
14.
15.
16.
The two sequences that define the self-cleaving elements from the genomic and antigenomic RNA of hepatitis delta virus were folded into secondary structures with similar features. Evidence in support of the two models was obtained from limited ribonuclease digestion of genomic and antigenomic RNA fragments containing the sequence 3' of the cleavage site. Under conditions where the rates of self-cleavage are enhanced by addition of 5 M urea (2-10 mM Mg2+ at 37 degrees C), ribonucleases T1, U2, A and V1 generated digestion patterns consistent with the proposed RNA structures. The evidence for a relatively stable structure in urea when Mg2+ is present suggests that denaturant-enhanced rates of self-cleavage could result from destabilization of competing inactive structures.  相似文献   

17.
18.
The sequence requirements for self-cleavage of hepatitis delta virus genomic RNA were examined using precursor RNAs which were labeled at either the 5' or 3' ends and progressively deleted from the unlabeled end. In the presence of 50% formamide, which enhances self-cleavage in 2 mM MgCl2 at 37 degrees C, 84 nucleotides (nt) 3' of the break site were required. In the absence of formamide the minimum was reduced to 82 nt. Under both sets of conditions, precursors with 1 nt 5' to the break site cleaved. These results allowed two condition-dependent minimal domains for self-cleavage to be defined. However, in the absence of formamide, sequences flanking the minimal domain inhibited cleavage, possibly through involvement in the formation of non-cleaving structures. These data are consistent with the idea that cleavage in vivo could be regulated by alternative RNA structures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号