首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
节肢动物门是动物界最大的门,占整个动物种数的80%,全世界约有120万现存种。节肢动物在生长发育过程中会感染多种微生物,这些微生物会与其形成协同进化和互利共生的关系。内共生细菌是一类广泛分布于节肢动物体内的共生微生物,能够进行垂直传播和水平传播,对宿主的生长发育、生殖代谢、适应性、免疫功能和进化等诸多方面均具有重要的作用。目前,随着现代分子生物学理论和技术的发展,节肢动物内共生细菌相关研究主要集中在对其宿主的生殖调控功能、与其宿主、宿主寄主植物以及其宿主体内微生物和宿主天敌间互作关系等方面。因此,利用内共生细菌对昆虫种群动态的生殖调控功能,阻断热带蚊虫带来的疾病或植物病害的传播并对宿主昆虫进行种群压制或种群替换,可达到防控害虫的目的。本文从节肢动物内共生细菌的传播方式、对其宿主生物学效应以及内共生细菌与其宿主、宿主寄主植物、宿主天敌和宿主体内微生物互作关系等多方面进行概述,并对内共生细菌今后研究方向进行展望,以期为生物进化、物种形成和种群压制提供参考。  相似文献   

2.
The rate and degree of proliferation of disease organisms determine their pathogenicity and the efficiency of their transmission. These traits dictate the impact of a disease on individuals as well as populations. Virulence and transmission of diseases are molded by evolutionary forces - pathogens and hosts are each selected to reproduce and persist. New ideas about the evolution of human diseases also apply to the relationships between insects and their diseases. Evidence for close associations between insects and pathogens include the viral suppression of insect molting hormones and the occurrence of latent virus that can be activated by foreign viruses.  相似文献   

3.
气候变化对中国农作物病害发生的影响   总被引:2,自引:0,他引:2  
基于全国农区527个气象站点1961—2010年逐日气象资料、逐年农作物病害发生面积以及产量资料,从气温、降水、日照等角度,采用相关分析方法,研究了气候变化背景下各气象要素变化对中国农作物病害发生的影响。结果表明:近50年来,气候变化导致的各气象因子变化总体有利于病害发生,年平均温度以0.27℃·10a-1的速率升高,其每升高1℃,可导致病害发生面积增加6094.4万hm2次;年平均降雨强度以0.24mm·d-1·10a-1的速度增加,其每增加1mm·d-1,可导致病害发生面积增加6540.4万hm2次;年平均日照时数以47.4h·10a-1的速率减少,其每减少100h,可导致病害发生面积增加3418.8万hm2次;在气候变化导致的光、温、水变化中,温度增加对病害发生面积增加的影响最为显著,其次为日照时数减少、第三为平均降雨强度增大,其标准化回归系数依次为0.508、-0.374、0.112。  相似文献   

4.
转基因抗虫水稻对生物多样性的影响   总被引:1,自引:0,他引:1  
Zhang L  Zhu Z 《遗传》2011,33(5):414-421
水稻是我国最重要的粮食作物,然而虫害造成的产量损失每年高达一千万吨以上。研究表明,转基因抗虫水稻对二化螟、三化螟和稻纵卷叶螟等水稻主要鳞翅目害虫具有高抗性,可以大幅度减少化学杀虫剂的使用。在不使用农药的情况下,在抗虫转基因水稻田中的害虫密度大幅度减少的同时,可以显著地增加中性昆虫及捕食性天敌数量和种类,显示出稻田生态系统和生物多样性的向良性发展的趋势。转基因水稻花粉向非转基因水稻品种的基因飘流实验表明,随着栽种距离的增大而显著减小,到间隔6.2 m时基因飘流频率已低于0.01%。转基因抗虫水稻的应用,对于保障我国粮食安全,保持农业可持续发展,保护生物多样性和生态环境尤其是在大幅度减少农药使用量方面具有重要意义。文章综述了转基因抗虫水稻研制进展及其对生物多样性的影响,并对农作物害虫防治的未来研究方向和发展趋势进行展望,以期为转基因抗虫水稻更好的应用提供借鉴。  相似文献   

5.
昆虫传播的植物病毒种类多、危害大,其传病毒的能力与昆虫体内共生菌产生的GroEL蛋白关系密切,该蛋白是分子伴侣hsp60家族的成员,对病毒进入昆虫血体腔免遭破坏起着保护作用,也与昆虫传病毒的专一性有关。本对昆虫内共生菌及其产生的GroEL进行了综述,并分析了研究内共生菌及其产生的蛋白质的科学意义与发展趋势,为植物病毒病的防治研究提供了新的思路。  相似文献   

6.
Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.  相似文献   

7.
R Cox  CW Revie  J Sanchez 《PloS one》2012,7(7):e41590
Global climate change is predicted to lead to an increase in infectious disease outbreaks. Reliable surveillance for diseases that are most likely to emerge is required, and given limited resources, policy decision makers need rational methods with which to prioritise pathogen threats. Here expert opinion was collected to determine what criteria could be used to prioritise diseases according to the likelihood of emergence in response to climate change and according to their impact. We identified a total of 40 criteria that might be used for this purpose in the Canadian context. The opinion of 64 experts from academic, government and independent backgrounds was collected to determine the importance of the criteria. A weight was calculated for each criterion based on the expert opinion. The five that were considered most influential on disease emergence or impact were: potential economic impact, severity of disease in the general human population, human case fatality rate, the type of climate that the pathogen can tolerate and the current climatic conditions in Canada. There was effective consensus about the influence of some criteria among participants, while for others there was considerable variation. The specific climate criteria that were most likely to influence disease emergence were: an annual increase in temperature, an increase in summer temperature, an increase in summer precipitation and to a lesser extent an increase in winter temperature. These climate variables were considered to be most influential on vector-borne diseases and on food and water-borne diseases. Opinion about the influence of climate on air-borne diseases and diseases spread by direct/indirect contact were more variable. The impact of emerging diseases on the human population was deemed more important than the impact on animal populations.  相似文献   

8.
Majka CG 《ZooKeys》2010,(51):73-83
The collection of maple sap for the production of maple syrup is a large commercial enterprise in Canada and the United States. In Canada, which produces 85% of the world's supply, it has an annual value of over $168 million CAD. Over 38 million trees are tapped annually, 6.5% of which use traditional buckets for sap collection. These buckets attract significant numbers of insects. Despite this, there has been very little investigation of the scale of this phenomenon and the composition of insects that are attracted to this nutrient source. The present paper reports the results of a preliminary study conducted on Prince Edward Island, Canada. Twenty-eight species of Coleoptera, Lepidoptera, and Trichoptera were found in maple sap buckets, 19 of which are known to be attracted to saps and nectars. The physiological role of sap feeding is discussed with reference to moths of the tribe Xylenini, which are active throughout the winter, and are well documented as species that feed on sap flows. Additionally, 18 of the 28 species found in this study are newly recorded in Prince Edward Island.  相似文献   

9.
The study of human diseases requires the testing of microorganisms in model systems. Although mammals are typically used, we argue the validity of using insects as models in order to examine human diseases, particularly the growing number of opportunistic microorganisms. Insects can be used in large numbers, are easily manipulated, and are not subject to the same ethical concerns as mammalian systems. Insects and mammals have many parallels with respect to microbial pathogenesis, from proteinaceous integuments that require breaching before infection to similarities in their innate immune responses. Reactions of insects to Candida and Pseudomonas spp. infections show good correlation with mouse models, providing precedent-setting examples of the study of human pathogens using insects. Insects as pathogen hosts also warrant study because they may act as reservoirs for emerging human pathogens. Finally, insect models may be used to examine the evolutionary processes involved in the acquisition of virulence factors and host-jumping mechanisms indispensable to emerging pathogens. Insect models may be used in 'niche' investigations where large sample sizes can facilitate rapid, informative screening of opportunistic diseases and provide insights into pathogen evolution, while reducing the cost and ethical concerns associated with mammalian models.  相似文献   

10.
Kate Davies 《EcoHealth》2006,3(2):86-94
This study estimates the economic costs associated with childhood diseases and disabilities attributable to environmental contaminants in Washington State, USA, including asthma, cancer, lead exposure, birth defects, and neurobehavioral disorders. The estimates are based on “cost of illness” models that include direct healthcare costs and indirect costs. The estimates are also based on an “environmentally attributable fraction” model which quantifies the proportions of each disease or disability that can reasonably be attributed to environmental contaminants. The study concludes that the annual cost of selected childhood diseases and disabilities attributable to environmental contaminants in Washington State is $1875 million in 2004 $, comprising $310.6 million in direct healthcare costs and $1565 million in indirect costs, and with a range of $1600–$2200 million a year. These estimates are consistent with other studies. Like the previous studies, a significant proportion of the estimated costs can be attributed to lead exposure. This estimate is equivalent to about 0.7% of the total Washington Gross State Product, and the estimated direct healthcare costs are equivalent to at least 0.2% of the total Washington State health expenditures. These costs could be lessened or prevented if exposures to environmental contaminants were reduced or eliminated. This study argues for the need for an ecosystem approach to human health in which the condition of the environment, in terms of exposures to environmental contaminants, must be addressed taking a systemic perspective.  相似文献   

11.
The current state of knowledge regarding the effect of pesticides on insect immunity is reviewed here. A basic understanding of these interactions is needed for several reasons, including to improve methods for controlling pest insects in agricultural settings, for controlling insect vectors of human diseases, and for reducing mortality in beneficial insects. Bees are particularly vulnerable to sublethal pesticide exposures because they gather nectar and pollen, concentrating environmental toxins in their nests in the process. Pesticides do have effects on immunity. Organophosphates and some botanicals have been found to impact hemocyte number, differentiation, and thus affect phagocytosis. The phenoloxidase cascade and malanization have also been shown to be affected by several insecticides. Many synthetic insecticides increase oxidative stress, and this could have severe impacts on the production of some antimicrobial peptides in insects, but research is needed to determine the actual effects. Pesticides can also affect grooming behaviors, rendering insects more susceptible to disease. Despite laboratory data documenting pesticide/pathogen interactions, little field data is available at the population level.  相似文献   

12.
鳞翅目昆虫种类繁多,对农业生产和人类生活产生重大影响,宿主昆虫与病毒相互关系的研究对于利用病毒杀虫剂进行害虫治理和益虫病毒性疾病的预防具有重要意义.因此,鳞翅目昆虫与病毒的互作研究显得尤为重要,宿主昆虫的免疫系统在抗病毒感染过程中发挥着关键作用,对病毒产生不同程度的免疫反应.本文综述了昆虫围食膜和中肠对病毒入侵的防御作用,病毒进入体腔后昆虫所产生的细胞免疫和体液免疫反应,以及RNAi、细胞的自噬与凋亡、Toll、Imd、JAK-STAT和STING信号通路等相关的抗病毒免疫途径,并对昆虫抗病毒免疫研究的制约因素和未来鳞翅目昆虫抗病毒免疫的研究重点进行了讨论,以期为害虫的生物防治和益虫疾病的防控提供理论依据.  相似文献   

13.
1. Predation and competition play a central role in ecological communities, and it is increasingly recognised that animals use early warning cues to reduce the impact of these antagonistic interactions. 2. Strategies to avoid risk can occur during embryo development through plasticity in egg hatching time. This strategy, and its associated costs and carryover effects on adults are little understood in insects. In this study, these are explored in two distantly related freshwater insects: the damselfly Ischnura elegans and the mosquito Aedes albopictus. 3. As predicted, damselfly eggs hatched earlier in response to larval predators cues, a treatment that also affected adult size. Risk cues did not affect mosquito egg hatching time, but they did affect larval development time in a sex‐dependent manner. 4. The results suggest that responses aimed at avoiding risks can be triggered during the egg stage, and although they can vary dramatically among species, they are likely to be widespread in insects. Early warning responses can be particularly important to understand the ecology of aquatic insects, some of them global vectors of human diseases.  相似文献   

14.

Background

By the end of 2011 Global Fund investments will be supporting 3.5 million people on antiretroviral therapy (ART) in 104 low- and middle-income countries. We estimated the cost and health impact of continuing treatment for these patients through 2020.

Methods and Findings

Survival on first-line and second-line ART regimens is estimated based on annual retention rates reported by national AIDS programs. Costs per patient-year were calculated from country-reported ARV procurement prices, and expenditures on laboratory tests, health care utilization and end-of-life care from in-depth costing studies. Of the 3.5 million ART patients in 2011, 2.3 million will still need treatment in 2020. The annual cost of maintaining ART falls from $1.9 billion in 2011 to $1.7 billion in 2020, as a result of a declining number of surviving patients partially offset by increasing costs as more patients migrate to second-line therapy. The Global Fund is expected to continue being a major contributor to meeting this financial need, alongside other international funders and domestic resources. Costs would be $150 million less in 2020 with an annual 5% decline in first-line ARV prices and $150–370 million less with a 5%–12% annual decline in second-line prices, but $200 million higher in 2020 with phase out of stavudine (d4T), or $200 million higher with increased migration to second-line regimens expected if all countries routinely adopted viral load monitoring. Deaths postponed by ART correspond to 830,000 life-years saved in 2011, increasing to around 2.3 million life-years every year between 2015 and 2020.

Conclusions

Annual patient-level direct costs of supporting a patient cohort remain fairly stable over 2011–2020, if current antiretroviral prices and delivery costs are maintained. Second-line antiretroviral prices are a major cost driver, underscoring the importance of investing in treatment quality to improve retention on first-line regimens.  相似文献   

15.
The study aimed to determine costs to the state government of implementing different interventions for controlling rabies among the entire human and animal populations of Tamil Nadu. This built upon an earlier assessment of Tamil Nadu''s efforts to control rabies. Anti-rabies vaccines were made available at all health facilities. Costs were estimated for five different combinations of animal and human interventions using an activity-based costing approach from the provider perspective. Disease and population data were sourced from the state surveillance data, human census and livestock census. Program costs were extrapolated from official documents. All capital costs were depreciated to estimate annualized costs. All costs were inflated to 2012 Rupees. Sensitivity analysis was conducted across all major cost centres to assess their relative impact on program costs. It was found that the annual costs of providing Anti-rabies vaccine alone and in combination with Immunoglobulins was $0.7 million (Rs 36 million) and $2.2 million (Rs 119 million), respectively. For animal sector interventions, the annualised costs of rolling out surgical sterilisation-immunization, injectable immunization and oral immunizations were estimated to be $ 44 million (Rs 2,350 million), $23 million (Rs 1,230 million) and $ 11 million (Rs 590 million), respectively. Dog bite incidence, health systems coverage and cost of rabies biologicals were found to be important drivers of costs for human interventions. For the animal sector interventions, the size of dog catching team, dog population and vaccine costs were found to be driving the costs. Rabies control in Tamil Nadu seems a costly proposition the way it is currently structured. Policy makers in Tamil Nadu and other similar settings should consider the long-term financial sustainability before embarking upon a state or nation-wide rabies control programme.  相似文献   

16.
We investigate the extent to which Japanese people can change their consumption and the corresponding environmental impact. We propose a new analytical framework with a rebound matrix that captures the monetary flow from potential savings to their respending (referred to as rebound). A questionnaire is used to derive the matrix. On average, respondents spent 3.4 million Yen annually, resulting in 12.4 tons of carbon dioxide (CO2) emissions in their daily lives. The survey results suggest that acceptable spending reductions would correspond to a CO2 emissions reduction of nearly 6%. However, the CO2 emissions would increase by nearly the same amount when the respondents respend their savable money (rebound CO2 emissions). The annual CO2 emissions and the annually reducible CO2 emissions both increase with the increase in annual expenditure. Consequently, the net CO2 emissions also increase with the increase in annual expenditure. The rebound spending is approximated using the rebound matrix. Finally, it is suggested that the net CO2 emissions can be reduced through lifestyle changes whereby spending on energy items is reduced and the resulting savings are spent on telecommunication, clothes, shoes, education, and housing.  相似文献   

17.
氧是机体进行新陈代谢和维持生存的必要因素。低氧环境在自然界普遍存在,也是许多重大疾病(如癌症)发生过程中基本的病理生理特征。生物包括昆虫在其生存和发育过程中经常面对低氧的挑战,它们发展出了各自的适应策略以求得生存和繁荣壮大。昆虫对于低氧环境适应包括在气管系统通气量、气体交换模式、体型大小和发育时间等生理机制上的改变。为揭示昆虫低氧适应机制,研究人员针对不同昆虫采用了来自人工选择或者自然选择的品系(种群),使用了基因芯片表达和转录组测序、基因组重测序技术和基因操作等技术。基于这些方法研究发现,在分子机制方面,昆虫可以通过抑制能量代谢、提高氧气利用率来适应低氧环境;还可以通过胰岛素通路、低氧诱导因子(HIF)信号通路等来调节自身代谢活动从而适应环境低氧;除此之外,昆虫的气管系统可以在基因调控下通过代偿性生理和形态变化来适应低氧环境。昆虫低氧适应机制的研究为探求昆虫数亿年进化过程中体形改变、物种形成、种群动态等提供提供新的视野,也增进对动物应对低氧或缺氧机理的深入理解,特别是为研究人类重大疾病的发生提供重要启示。  相似文献   

18.
Some of the most devastating diseases of trees involve associations between forest insects and microorganisms. Although a small number of native insect-microorganism symbioses can cause tree mortality, the majority of associations with tree health implications involve one or more exotic organisms. Here, we divide damaging symbioses between forest insects and microorganisms into four categories based on the native/exotic status of the species involved: (1) insect and microorganism are native; (2) insect is native, microorganism is exotic; (3) insect is exotic, microorganism is native; and (4) insect and microorganism are both exotic. For each category, we describe several well-researched examples of forest insect symbioses and discuss some of the consequences of the types of interactions within each category. We then discuss priorities for research on forest insect symbioses that could help to further elucidate patterns in the complexity of such interactions in the context of invasion biology. We argue that a nuanced understanding of insect-pathogen relationships is lacking, even for the few well-studied examples. Because novel associations between insects, microorganisms, and trees are increasing with globalization, such symbioses and their potential to negatively impact forest ecosystems demand focused research in the future.  相似文献   

19.
Krill plays a significant role in the Barents Sea ecosystem, providing energy transport between different trophic levels. The current paper presents the results of a long-term study (1980–2009) based on pelagic trawl catches from August to September. Our investigations show that the krill species were distributed widely in the Barents Sea and that the largest krill concentrations were restricted to the west-central and eastern parts of the Barents Sea. The current paper presents the relative biomass indices, and the estimates must be interpreted as minimum biomass. The mean annual krill biomass was estimated to be 22 million tonnes in wet weight, with the highest values being as much as 48 million tonnes. Capelin is the largest pelagic stock, and in some years, their biomass can amount to 4–7 million tonnes, which can impose high predation pressure on krill. When their biomass is high, capelin may consume close to 26 million tonnes annually. The predation from pelagic (herring and blue whiting) and bottom (cod and haddock) fish species was much lower, being 9 and 1 million tonnes, respectively. A negative relationship between krill biomass and capelin stock size above 74°N was observed during the study period. However, during the last decade, the krill biomass has increased despite heavy predation from capelin in some years. A positive significant linear relationship between the mean annual Kola temperature and the krill biomass seems to indicate that the recent warming conditions have favourable impacts on the krill populations in the Barents Sea.  相似文献   

20.
Respiratory pathogens are amongst the world's most successful killers. Tuberculosis kills approximately 2 million individuals each year, and pertussis is responsible for roughly 300,000 annual deaths. Although the two diseases are fundamentally different in the expression of their pathogenesis and in the biology of their causative agents, a common heterologous prime/boost vaccination strategy is proposed, using live attenuated vaccines against tuberculosis (the already existing BCG) and pertussis (a novel attenuated Bordetella pertussis strain) early in life for priming, followed by a booster with acellular vaccines, based on the novel heparin-binding haemagglutinin for tuberculosis, and already available acellular vaccines against pertussis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号