首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full sequence-specific assignments for the 1H NMR lines of the backbone protons of the human complement factor C5a are described and documented. The results were obtained by largely following the methodology developed by Wüthrich et al. [Wüthrich, K., Wider, G., Wagner, G., & Braun, W. (1982) J. Mol. Biol. 155, 311]. Assignments for the majority of the amino acid side chain protons were obtained by using a comparison of double- and triple-quantum-filtered two-dimensional correlated experiments together with the analysis of relayed coherence transfer spectra. The assignments provide the basis for the determination of the thus far unknown three-dimensional structure of C5a from nuclear Overhauser enhancement distance constraints.  相似文献   

2.
3.
P L Weber  D E Wemmer  B R Reid 《Biochemistry》1985,24(17):4553-4562
The cro repressor protein from bacteriophage lambda has been studied in solution by two-dimensional nuclear magnetic resonance spectroscopy (2D NMR). Following the approach of Wüthrich and co-workers [Wüthrich, K., Wider, G., Wagner, G., & Braun, W. (1982) J. Mol. Biol. 155, 311-319], individual spin systems were identified by J-correlated spectroscopy (COSY) supplemented, where necessary, by relayed coherence transfer spectroscopy (RELAY). Nuclear Overhauser effect spectroscopy (NOESY) was used to obtain sequence-specific assignments. From the two-dimensional spectra, the peptide backbone resonances (NH and C alpha H) for 65 of the 66 amino acids were assigned, as well as most of the side chain resonances. The chemical shifts for the assigned protons are reported at 35 degrees C in 10 mM potassium phosphate, pH 6.8, and in 10 mM potassium phosphate, pH 4.6, 0.2 M KCl, and 0.1 mM EDTA. Small shifts were observed for some resonances upon addition of salt, but no major changes in the spectrum were seen, indicating that no global structural change occurs between these ionic strengths. NOE patterns characteristic of alpha-helices, beta-strands, and turns are seen in various regions of the primary sequence. From the location of these regions the secondary structure of cro in solution appears to be virtually identical with the crystal structure [Anderson, W. F., Ohlendorf, D. H., Takeda, Y., & Matthews, B. W. (1981) Nature (London) 290, 754-758]. Missing assignments include the Pro-59 resonances and the peripheral protons of the eight lysine, the three arginine, and three of the five isoleucine residues.  相似文献   

4.
Summary Proton chemical shifts of a series of disordered linear peptides (H-Gly-Gly-X-Gly-Gly-OH, with X being one of the 20 naturally occurring amino acids) have been obtained using 1D and 2D 1H NMR at pH 5.0 as a function of temperature and solvent composition. The use of 2D methods has allowed some ambiguities in side-chain assignments in previous studies to be resolved. An additional benefit of the temperature data is that they can be used to obtain ‘random coil’ amide proton chemical shifts at any temperature between 278 and 318 K by interpolation. Changes of chemical shift as a function of trifluoroethanol concentration have also been determined at a variety of temperatures for a subset of peptides. Significant changes are found in backbone and side-chain amide proton chemical shifts in these ‘random coil’ peptides with increasing amounts of trifluoroethanol, suggesting that caution is required when interpreting chemical shift changes as a measure of helix formation in peptides in the presence of this solvent. Comparison of the proton chemical shifts obtained here for H-Gly-Gly-X-Gly-Gly-OH with those for H-Gly-Gly-X-Ala-OH [Bundi, A. and Wüthrich, K. (1979) Biopolymers, 18, 285–297] and for Ac-Gly-Gly-X-Ala-Gly-Gly-NH2 [Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995) J. Biomol. NMR, 5, 67–81] generally shows good agreement for CH protons, but reveals significant variability for NH protons. Amide proton chemical shifts appear to be highly sensitive to local sequence variations and probably also to solution conditions. Caution must therefore be exercised in any structural interpretation based on amide proton chemical shifts.  相似文献   

5.
Hydrogen exchange in thermally denatured ribonuclease A   总被引:14,自引:0,他引:14  
A D Robertson  R L Baldwin 《Biochemistry》1991,30(41):9907-9914
Hydrogen exchange has been used to test for the presence of nonrandom structure in thermally denatured ribonuclease A (RNase A). Quenched-flow methods and 2D 1H NMR spectroscopy were used to measure exchange rates for 36 backbone amide protons (NHs) at 65 degrees C and at pH* (uncorrected pH measured in D2O) values ranging from 1.5 to 3.8. The results show that exchange is approximately that predicted for a disordered polypeptide [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158]; we thus are unable to detect any stable hydrogen-bonded structure in thermally denatured RNase A. Two observations suggest, however, that the predicted rates should be viewed with some caution. First, we discovered that one of the approximations made by Molday et al. (1972), that exchange for valine NHs is similar to that for alanine NHs, had to be modified; the exchange rates for valine NHs are about 4-fold slower. Second, the pH minima for exchange tend to fall at lower pH values than predicted, by as much as 0.45 pH units. These results are in accord with those of Roder and co-workers for bovine pancreatic trypsin inhibitor [see Table I in Roder, H., Wagner, G., & Wüthrich, K. (1985) Biochemistry 24, 7407-7411]. The origin of the disagreement between predicted and observed pH minima is unknown but may be the high net positive charge on these proteins at low pH. In common with some other thermally unfolded proteins, heat-denatured ribonuclease A shows a significant circular dichroism spectrum in the far-ultraviolet region [Labhardt, A. M. (1982) J. Mol. Biol. 157, 331-355].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Sequence-specific assignments of the 1H-nuclear magnetic resonance (NMR) spectra of the cardiotoxins CTXIIa and CTXIIb from Naja mossambica mossambica were obtained using two-dimensional NMR experiments at 500 MHz and the independently determined amino acid sequences. Assignments were obtained from data at 25 degrees C and 45 degrees C for all but one backbone proton of the 60 residues in each protein. Complete or partial assignments are also reported for the side-chain protons. These assignments supercede those published previously for the toxin preparation VII2 [Hosur, R. V., Wider, G. & Wüthrich K. (1983) Eur. J. Biochem. 130, 497-508]. The 1H/2H-exchange kinetics were measured in 2H2O at 20 degrees C for the amide protons and the N-terminal amino group. These and additional NMR data enabled the determination of the secondary structure in aqueous solution, which is virtually identical in CTXIIa and CTXIIb. Both proteins contain a short double-stranded antiparallel beta-sheet comprising the residues 2-4 and 11-13, and a triple-stranded antiparallel beta-sheet consisting of the residues 20-26, 35-39, and 49-55. The two peripheral strands of the triple-stranded beta-structure were found to be connected by a right-handed cross-over, and the locations of several tight turns were also identified.  相似文献   

7.
The exchange kinetics of the slowest exchanging BPTI beta-sheet protons are complex compared to model peptides; the activation energy, E alpha, and the pH dependence are temperature dependent. We have measured the exchange kinetics in the range pH 1--11, 33--71 degrees C, particularly the temperature dependence. The data are fit to a model in which exchange of each proton is determined by two discrete dynamical processes, one with E alpha approximately 65 kcal/mol and less than first order dependence on catalyst ion, and one with E alpha 20--30 kcal/mol and approaching first order in catalyst ion. The low activation energy process is the mechanism of interest in the native conformation of globular proteins and involves low energy, small amplitude fluctuations; the high activation energy process involves major unfolding. The model is simple, has a precedent in the hydrogen exchange literature, and explains quantitatively the complex feature of the exchange kinetics of single protons in BPTI, including the following. For the slowest exchanging protons, in the range 36 degrees--68 degrees C, E alpha is approximately 65 kcal/mol at pH approximately 4, 20--30 kcal/mol at pH greater than 10, and rises to approximately 65 kcal/mol with increasing temperature at pH 6--10; the Arrhenius plots converge around 70 degrees C; the pH of minimum rate, pHmin, is greater than 1 pH unit higher at 68 degrees C than for model compounds; and at high pH, the pH-rate profiles shift to steeper slope; the exchange rates around pHmin are correlated to the thermal unfolding temperature in BPTI derivatives (Wagner and Wüthrich, 1979, J. Mol. Biol. 130:31). For the more rapidly exchanging protons in BPTI the model accounts for the observation of normal pHmin and E alpha of 20--30 kcal/mol at all pH's. The important results of our analysis are (a) rates for exchange from the folded state of proteins are not correlated to thermal lability, as proposed by Wuthrich et al. (1979, J. Mol. Biol. 134:75); (b) the unfolding rate for the BPTI cooperative thermal transition is equal to the observed exchange rates of the slowest exchanging protons between pH 8.4--9.6, 51 degrees C; (c) the rates for exchange of single protons from folded BPTI are consistent with our previous hydrogen-tritium exchange results and with a penetration model of the dynamic processes limiting hydrogen exchange.  相似文献   

8.
Nuclear magnetic resonance was used to measure the hydrogen-deuterium exchange rates for individual interior amide protons in a group of small globular proteins related to the basic pancreatic trypsin inhibitor (BPTI). These proteins include two homologous proteins and seven chemical modifications of BPTI. It was previously shown that the spatial structure of BPTI is preserved in all these related proteins. The exchange rates for corresponding amide protons in the different proteins were found to vary by a factor of as much as 5 X 104. The proton exchange is correlated with the thermal stability of the proteins, i.e. the lower the denaturation temperature, the faster the NH exchange. Further evidence that the exchange of interior amide protons is promoted by global fluctuations of the protein structures comes from the observation that the order of the relative exchange rates for the individual protons is the same in all the different species. This is the third in a series of three papers on nuclear magnetic resonance studies of labile protons in BPTI-related proteins. A detailed interpretation of the data will be given in a forthcoming paper.  相似文献   

9.
The interaction of cytochrome c (cyt c) with anionic lipid membranes is known to disrupt the tightly packed native structure of the protein. This process leads to a lipid-inserted denatured state, which retains a native-like alpha-helical structure but lacks any specific tertiary interactions. The structural and dynamic properties of cyt c bound to vesicles containing an anionic phospholipid (DOPS) were investigated by amide H-(2)H exchange using two-dimensional NMR spectroscopy and electrospray ionisation mass spectrometry. The H-(2)H exchange kinetics of the core amide protons in cyt c, which in the native protein undergo exchange via an uncorrelated EX2 mechanism, exchange in the lipid vesicles via a highly concerted global transition that exposes these protected amide groups to solvent. The lack of pH dependence and the observation of distinct populations of deuterated and protonated species by mass spectrometry confirms that exchange occurs via an EX1 mechanism with a common rate of 1(+/-0.5) h(-1), which reflects the rate of transition from the lipid-inserted state, H(l), to an unprotected conformation, D(i), associated with the lipid interface.  相似文献   

10.
Nearly complete assignments of the proton nuclear magnetic resonance (NMR) spectrum of the polypeptide toxin III from the sea anemone Radianthus paumotensis (RP) are presented. The secondary structures of the related toxins RP II and RP III are described and are compared with each other and with another related toxin ATX Ia from Anemonia sulcata [Widmer, H., Wagner, G., Schweitz, H., Lazdunski, M., & Wüthrich, K. (1988) Eur. J. Biochem. 171, 177-192]. All of these proteins contain a highly twisted four-strand antiparallel beta-sheet core connected by loops of irregular structure. From the work done with AP-A from Anthopleura xanthogrammica [Gooley, P. R., & Norton, R. S. (1986) Biochemistry 25, 2349-2356], it is clear that this homologous toxin also has the same basic core. Some small differences are seen in the structures of these toxins, particularly in the position of the N-terminal residues that form one of the outside strands of the beta-sheet. In addition, the R. paumotensis toxins are two residues longer, extending the third strand of sheet containing the C-terminal residues. A comparison of chemical shifts for assigned residues is also presented, in general supporting the similarity of structure among these proteins.  相似文献   

11.
The virgin (reactive-site Leu18-Glu19 peptide bond intact) and modified (reactive-site Leu18-Glu19 peptide bond hydrolyzed) forms of turkey ovomucoid third domain (OMTKY3 and OMTKY3*, respectively) have been analyzed by proton-detected 1H(13C) two-dimensional single-bond correlation (1H[13C]SBC) spectroscopy. Previous 1H-nmr assignments of these proteins [A.D. Robertson, W.M. Westler, and J.L Markley (1988) Biochemistry, 27, 2519-2529; G. I. Rhyu and J. L. Markley (1988) Biochemistry, 27, 2529-2539] have been extended to directly bonded 13C atoms. Assignments have been made to 52 of the 56 backbone 13C alpha-1H units and numerous side-chain 13C-1H groups in both OMTKY3 and OMTKY3*. The largest changes in the 13C chemical shift upon conversion of OMTKY3 to OMTKY3* occur at or near the reactive site, and tend toward values observed in small peptides. Moreover, the side-chain prochiral methylene protons attached to the C gamma of Glu19 and C delta of Arg21 show nonequivalent chemical shifts in OMTKY3 but more equivalent chemical shifts in OMTKY3*. These results suggest that the reactive site region becomes less ordered upon hydrolysis of the Leu18-Glu19 peptide bond. Comparison of 13C alpha chemical shifts of OMTKY3 and bovine pancreatic trypsin inhibitor [D. Brühuiler and G. Wagner (1986) Biochemistry 25, 5839-5843; N. R. Nirmala and G. Wagner (1988) Journal of the American Chemical Society, 110, 7557-7558] with small peptide values [R. Richarz and K. Wüthrich (1978) Biopolymers, 17, 2133-2141] suggests that 13C alpha chemical shifts of residues residing in helices are generally about 2 ppm downfield of resonances from nonhelical residues.  相似文献   

12.
Q W Wang  A D Kline  K Wüthrich 《Biochemistry》1987,26(20):6488-6493
The individual amide proton exchange rates in Tendamistat at pH 3.0 and 50 degrees C were measured by using two-dimensional 1H nuclear magnetic resonance. Overall, it was found that the distribution of exchange rates along the sequence is dominated by the interstrand hydrogen bonds of the beta-sheet structures. The slowly exchanging protons in the core of the two beta-sheets were shown to exchange via an EX2 mechanism. Further analysis of the data indicates that different large-scale structure fluctuations are responsible for the exchange from the two beta-sheets, even though the three-dimensional structure of Tendamistat appears to consist of a single structural domain.  相似文献   

13.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

14.
On the pH dependence of amide proton exchange rates in proteins.   总被引:2,自引:0,他引:2  
We have analyzed the pH dependencies of published amide proton exchange rates (kex) in three proteins: bovine pancreatic trypsin inhibitor (BPTI), bull seminal plasma proteinase inhibitor IIA (BUSI IIA), and calbindin D9K. The base-catalyzed exchange rate constants (kOH) of solvent exposed amides in BPTI are lower for residues with low peptide carbonyl exposure, showing that the environment around the carbonyl oxygen influences kOH. We also examined the possible importance of an exchange mechanism that involves formations of imidic acid intermediates along chains of hydrogen-bonded peptides in the three proteins. By invoking this "relayed imidic acid exchange mechanism," which should be essentially acid-catalyzed, we can explain the surprisingly high pHmin (the pH value at which kex reaches a minimum) found for the non-hydrogen-bonded amide protons in the beta-sheet in BPTI. The successive increase of pHmin along a chain of hydrogen-bonded peptides from the free amide to the free carbonyl, observed in BPTI, can be explained as an increasing contribution of the proposed mechanism in this direction of the chain. For BUSI IIA (pH 4-5) and calbindin D9K (pH 6-7) the majority of amide protons with negative pH dependence of kex are located in chains of hydrogen-bonded peptides; this situation is shown to be consistent with the proposed mechanism.  相似文献   

15.
The effect of strongly destabilizing mutations, I106A and V108G of Ribonuclease A (RNase A), on its structure and stability has been determined by NMR. The solution structures of these variants are essentially equivalent to RNase A. The exchange rates of the most protected amide protons in RNase A (35°C), the I106A variant (35°C), and the V108G variant (10°C) yield stability values of 9.9, 6.0, and 6.8 kcal/mol, respectively, when analyzed assuming an EX2 exchange mechanism. Thus, the destabilization induced by these mutations is propagated throughout the protein. Simulation of RNase A hydrogen exchange indicates that the most protected protons in RNase A and the V108G variant exchange via the EX2 regime, whereas those of I106A exchange through a mixed EX1 + EX2 process. It is striking that a single point mutation can alter the overall exchange mechanism. Thus, destabilizing mutations joins high temperatures, high pH and the presence of denaturating agents as a factor that induces EX1 exchange in proteins. The calculations also indicate a shift from the EX2 to the EX1 mechanism for less protected groups within the same protein. This should be borne in mind when interpreting exchange data as a measure of local stability in less protected regions.  相似文献   

16.
Summary Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in solution. In this paper, solvent suppression schemes recently developed for observation of hydration water resonances were used to observe hydroxyl protons of serine, threonine and tyrosine in aqueous solutions of small model peptides and the protein basic pancreatic trypsin inhibitor (BPTI). The chemical shifts of the hydroxyl protons of serine and threonine were found to be between 5.4 and 6.2 ppm, with random-coil shifts at 4°C of 5.92 ppm and 5.88 ppm, respectively, and those of tyrosine between 9.6 and 10.1 ppm, with a random-coil shift of 9.78 ppm. Since these spectral regions are virtually free of other polypeptide1H NMR signals, cross peaks with the hydroxyl protons are usually well separated even in homonuclear two-dimensional1H NMR spectra. To illustrate the practical use of hydroxyl proton NMR in polypeptides, the conformations of the side-chain hydroxyl groups in BPTI were characterized by measurements of nuclear Overhauser effects and scalar coupling constants involving the hydroxyl protons. In addition, hydroxyl proton exchange rates were measured as a function of pH, where simple first-order rate processes were observed for both acid- and base-catalysed exchange of all but one of the hydroxyl-bearing residues in BPTI. For the conformations of the individual Ser, Thr and Tyr side chains characterized in the solution structure with the use of hydroxyl proton NMR, both exact coincidence and significant differences relative to the corresponding BPTI crystal structure data were observed.[/p]  相似文献   

17.
Chi YH  Kumar TK  Kathir KM  Lin DH  Zhu G  Chiu IM  Yu C 《Biochemistry》2002,41(51):15350-15359
The conformational stability of the human acidic fibroblast growth factor (hFGF-1) is investigated using amide proton exchange and temperature-dependent chemical shifts, monitored by two-dimensional NMR spectroscopy. The change in free energy of unfolding (DeltaG(u)) of hFGF-1 is estimated to be 5.00 +/- 0.09 kcal.mol(-)(1). Amide proton-exchange rates of 74 residues (in hFGF-1) have been unambiguously measured, and the exchange process occurs predominately according to the conditions of the EX2 limit. The exchange rates of the fast-exchanging amide protons exposed to the solvent have been measured using the clean SEA-HSQC technique. The amide proton protection factor and temperature coefficient estimates show reasonably good correlation. Residues in beta-strands II and VI appear to constitute the stability core of the protein. Among the 12 beta-strands constituting the beta-barrel architecture of hFGF-1, beta-strand XI, located in the heparin binding domain, exhibits the lowest average protection factor value. Amide protons involved in the putative folding nucleation site in hFGF-1, identified by quench-flow NMR studies, do not represent the slow-exchanging core. Residues in portions of hFGF-1 experiencing high conformational flexibility mostly correspond to those involved in receptor recognition and binding.  相似文献   

18.
K H Mayo 《Biochemistry》1985,24(14):3783-3794
When H2O-exchanged, lyophilized mouse epidermal growth factor (mEGF) is dissolved in deuterium oxide at low pH (i.e., below approximately 6.0), 13 well-resolved, amide proton resonances are observed in the downfield region of an NMR spectrum (500 MHz). Under the conditions of these experiments, the lifetimes of these amide protons in exchange for deuterons of the deuterium oxide solvent suggest that these amide protons are hydrogen-bonded, backbone amide protons. Several of these amide proton resonances show splittings (i.e., JNH alpha-CH) of approximately 8-10 Hz, indicating that their associated amide protons are in some type of beta-structure. Selective nuclear Overhauser effect (NOE) experiments performed on all amide proton resonances strongly suggest that all 13 of these backbone amide protons are part of a single-tiered beta-sheet structural domain in mEGF. Correlation of 2D NMR correlated spectroscopy data, identifying scaler coupled protons, with NOE data, identifying protons close to the irradiated amide protons, allows tentative assignment of some resonances in the NOE difference spectra to specific amino acid residues. These data allow a partial structural model of the tiered beta-sheet domain in mEGF to be postulated.  相似文献   

19.
G D Henry  J H Weiner  B D Sykes 《Biochemistry》1987,26(12):3626-3634
Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D2O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H2O solutions; in 1:1 H2O/D2O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158], the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The backbone dynamics of the EF-hand Ca(2+)-binding protein, calbindin D9k, has been investigated in the apo, (Cd2+)1 and (Ca2+)2 states by measuring the rate constants for amide proton exchange with solvent. 15N-1H correlation spectroscopy was utilized to follow direct 1H-->2H exchange of the slowly exchanging amide protons and to follow indirect proton exchange via saturation transfer from water to the rapidly exchanging amide protons. Plots of experimental rate constants versus intrinsic rate constants have been analyzed to give qualitative insight into the opening modes of the protein that lead to exchange. These results have been interpreted within the context of a progressive unfolding model, wherein hydrophobic interactions and metal chelation serve to anchor portions of the protein, thereby damping fluctuations and retarding amide proton exchange. The addition of Ca2+ or Cd2+ was found to retard the exchange of many amide protons observed to be in hydrogen-bonding environments in the crystal structure of the (Ca2+)2 state, but not of those amide protons that were not involved in hydrogen bonds. The largest changes in rate constant occur for residues in the ion-binding loops, with substantial effects also found for the adjacent residues in helices I, II and III, but not helix IV. The results are consistent with a reorganization of the hydrogen-bonding networks in the metal ion-binding loops, accompanied by a change in the conformation of helix IV, as metal ions are chelated. Further analysis of the results obtained for the three states of metal occupancy provides insight into the nature of the changes in conformational fluctuations induced by ion binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号