首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Zahn S  Godillot P  Yoshimura A  Chaiken I 《Cytokine》2000,12(9):1299-1306
Receptor activation by the haematopoietic growth factor proteins interleukin 5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF) leads to phosphorylation of JAK2 as a key trigger of signal transduction. JAB has recently been identified as a regulator of JAK2 phosphorylation and activity by binding phosphorylated JAK2 and inducing its degradation. As part of our effort to define molecular recognition networks that lead to signalling, we investigated the effect of JAB on both JAK2 phosphorylation and JAK2 interaction state that ensue upon IL-5 stimulation in recombinant 293T cells cotransfected 293T cells with IL-5R alpha, beta c and hJAK2 either with or without JAB. Without JAB, stimulation with wild-type and re-engineered single chain (sc) IL-5 induced a time-dependent phosphorylation of JAK2. In the presence of JAB cotransfection, no phospho-JAK2 was observed, and JAB was observed co-immunoprecipitated with non-phosphorylated JAK2. The time dependence of JAB co-immunoprecipitation correlated with the time dependence of JAK2 phosphorylation when JAB was absent. Since JAB has already been shown to bind JAK2 via a phosphorylated tyrosine, the current data suggest that JAB binds to phosphorylated JAK2, enhances JAK2 dephosphorylation and remains associated in a complex, with dephosphorylated JAK2, that may be a precursor leading to irreversible JAK2 degradation.  相似文献   

2.
SH2-Bbeta has been shown to bind via its SH2 (Src homology 2) domain to tyrosyl-phosphorylated JAK2 and strongly activate JAK2. In this study, we demonstrate the existence of an additional binding site(s) for JAK2 within the N-terminal region of SH2-Bbeta (amino acids 1 to 555) and the ability of this region of SH2-B to inhibit JAK2. Four lines of evidence support the existence of this additional binding site(s). In a glutathione S-transferase pull-down assay, wild-type SH2-Bbeta and SH2-Bbeta(R555E) with a defective SH2 domain bind to both tyrosyl-phosphorylated JAK2 from growth hormone (GH)-treated cells and non-tyrosyl-phosphorylated JAK2 from control cells, whereas the SH2 domain of SH2-Bbeta binds only to tyrosyl-phosphorylated JAK2 from GH-treated cells. Similarly, JAK2 is present in alphaSH2-B immunoprecipitates in the absence and presence of GH, with GH substantially increasing the coprecipitation of JAK2 with SH2-B. When coexpressed in COS cells, SH2-Bbeta coimmunoprecipitates not only wild-type, tyrosyl-phosphorylated JAK2 but also kinase-inactive, non-tyrosyl-phosphorylated JAK2(K882E), although to a lesser extent. DeltaC555 (amino acids 1 to 555 of SH2-Bbeta) that lacks most of the SH2 domain binds similarly to wild-type JAK2 and kinase-inactive JAK2(K882E). Experiments using a series of N- and C-terminally truncated SH2-Bbeta constructs indicate that the pleckstrin homology (PH) domain (amino acids 269 to 410) and amino acids 410 to 555 are necessary for maximal binding of SH2-Bbeta to inactive JAK2, but neither region alone is sufficient for maximal binding. The SH2 domain of SH2-Bbeta is necessary and sufficient for the stimulatory effect of SH2-Bbeta on JAK2 and JAK2-mediated tyrosyl phosphorylation of Stat5B. In contrast, DeltaC555 lacking the SH2 domain, and to a lesser extent the PH domain alone, inhibits JAK2. DeltaC555 also blocks JAK2-mediated tyrosyl phosphorylation of Stat5B in COS cells and GH-stimulated nuclear accumulation of Stat5B in 3T3-F442A cells. These data indicate that in addition to the SH2 domain, SH2-Bbeta has one or more lower-affinity binding sites for JAK2 within amino acids 269 to 555. The interaction via this site(s) in SH2-B with inactive JAK2 seems likely to increase the local concentration of SH2-Bbeta around JAK2, thereby facilitating binding of the SH2 domain to ligand-activated JAK2. This would result in a more rapid and robust cellular response to hormones and cytokines that activate JAK2. This interaction between inactive JAK2 and SH2-B may also help prevent abnormal activation of JAK2.  相似文献   

3.
Zou H  Yan D  Mohi G 《FEBS letters》2011,585(7):1007-1013
The JAK2V617F mutation has been identified in most patients with myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocythemia and primary myelofibrosis. Although JAK2V617F is the predominant allele associated with MPNs, other activating Janus kinase 2 (JAK2) alleles (such as K539L, T875N) also have been identified in distinct MPNs. The basis for the differences in the in vivo effects of different JAK2 alleles remains unclear. We have characterized three different classes of disease-associated JAK2 mutants (JAK2V617F, JAK2K539L and JAK2T875N) and found significant differences in biochemical, signaling and transforming properties among these different classes of JAK2 mutants.  相似文献   

4.
IL-33, a member of the IL-1 family of cytokines, has been shown to activate NF-κB and MAP kinase family through the IL-1 receptor-related protein, ST2L. In this study, we found that IL-33 rapidly activated a tyrosine kinase, JAK2. Interestingly, we demonstrated the functional involvement of JAK2 in IL-33-induced IκBα degradation and NF-κB activation, since a JAK2 inhibitor, AG490, effectively inhibited this signaling pathway. Furthermore, IL-33 failed to induce IκBα degradation and NF-κB activation in JAK2-deficient MEFs expressing ST2L, compared with wild-type MEFs expressing ST2L. In addition, the introduction of wild-type JAK2 but not kinase dead JAK2 mutant (K882R) restored the IL-33-induced efficient activation of NF-κB in JAK2-deficient MEFs expressing ST2L, resulting in the induction of IL-6, CCL2/MCP-1 and CXCL1/KC expression. On the other hand, the activation of ERK, JNK and p38 was unaffected by JAK2 inhibition and JAK2 deficiency. Thus, these data demonstrate that JAK2 plays an important role in regulating IL-33-induced NF-κB activation.  相似文献   

5.
Activation of the tyrosine kinase JAK2 is an essential step in cellular signaling by growth hormone (GH) and multiple other hormones and cytokines. Murine JAK2 has a total of 49 tyrosines which, if phosphorylated, could serve as docking sites for Src homology 2 (SH2) or phosphotyrosine binding domain-containing signaling molecules. Using a yeast two-hybrid screen of a rat adipocyte cDNA library, we identified a splicing variant of the SH2 domain-containing protein SH2-B, designated SH2-Bbeta, as a JAK2-interacting protein. The carboxyl terminus of SH2-Bbeta (SH2-Bbetac), which contains the SH2 domain, specifically interacts with kinase-active, tyrosyl-phosphorylated JAK2 but not kinase-inactive, unphosphorylated JAK2 in the yeast two-hybrid system. In COS cells coexpressing SH2-Bbeta or SH2-Bbetac and murine JAK2, both SH2-Bbetac and SH2-Bbeta coimmunoprecipitate to a significantly greater extent with wild-type, tyrosyl-phosphorylated JAK2 than with kinase-inactive, unphosphorylated JAK2. SH2-Bbetac also binds to immunoprecipitated wild-type but not kinase-inactive JAK2 in a far Western blot. In 3T3-F442A cells, GH stimulates the interaction of SH2-Bbeta with tyrosyl-phosphorylated JAK2 both in vitro, as assessed by binding of JAK2 in cell lysates to glutathione S-transferase (GST)-SH2-Bbetac or GST-SH2-Bbeta fusion proteins, and in vivo, as assessed by coimmunoprecipitation of JAK2 with SH2-Bbeta. GH promoted a transient and dose-dependent tyrosyl phosphorylation of SH2-Bbeta in 3T3-F442A cells, further suggesting the involvement of SH2-Bbeta in GH signaling. Consistent with SH2-Bbeta being a substrate of JAK2, SH2-Bbetac is tyrosyl phosphorylated when coexpressed with wild-type but not kinase-inactive JAK2 in both yeast and COS cells. SH2-Bbeta was also tyrosyl phosphorylated in response to gamma interferon, a cytokine that activates JAK2 and JAK1. These data suggest that GH-induced activation and phosphorylation of JAK2 recruits SH2-Bbeta and its associated signaling molecules into a GHR-JAK2 complex, thereby initiating some as yet unidentified signal transduction pathways. These pathways are likely to be shared by other cytokines that activate JAK2.  相似文献   

6.
Abnormalities in the JAK2/STAT3 pathway are involved in the pathogenesis of colorectal cancer (CRC), including apoptosis. However, the exact mechanism by which dysregulated JAK2/STAT3 signalling contributes to the apoptosis has not been clarified. To investigate the role of both JAK2 and STAT3 in the mechanism underlying CRC apoptosis, we inhibited JAK2 with AG490 and depleted STAT3 with a small interfering RNA. Our data showed that inhibition of JAK2/STAT3 signalling induced CRC cellular apoptosis via modulating the Bcl-2 gene family, promoting the loss of mitochondrial transmembrane potential (Δψm) and the increase of reactive oxygen species. In addition, our results demonstrated that the translocation of cytochrome c (Cyt c), caspase activation and cleavage of poly (ADP-ribose) polymerase (PARP) were present in apoptotic CRC cells after down-regulation of JAK2/STAT3 signalling. Moreover, inhibition of JAK2/STAT3 signalling suppressed CRC xenograft tumour growth. We found that JAK2/STAT3 target genes were decreased; meanwhile caspase cascade was activated in xenograft tumours. Our findings illustrated the biological significance of JAK2/STAT3 signalling in CRC apoptosis, and provided novel evidence that inhibition of JAK2/STAT3 induced apoptosis via the mitochondrial apoptotic pathway. Therefore, JAK2/STAT3 signalling may be a potential target for therapy of CRC.  相似文献   

7.
JAK2 is a cytoplasmic tyrosine kinase that has a vital role in signal transduction from several hemopoietic growth factor receptors. The JAK2 V617F mutation has been implicated in a variety of diseases mainly related to myeloproliferative disorders including polycythemia Vera, essential thrombocythemia, and idiopathic Myelofibrosis but has not been previously described in Thalassemia patients. We studied 36 Lebanese patients diagnosed with thalassemia intermedia and assessed the presence or absence of the JAK2 V617F mutation using JAK2 activating mutation assay (In VivoScribe Technologies) and Polymerase Chain Reaction (PCR). None of the thalassemia intermedia patients were positive for this mutation. To our knowledge, this study is the first to determine the status of JAK2 V617F mutation in thalassemia intermedia patients and expands the international published literature on JAK2. The latter’s V617F mutation does not seem to play a role in this hematologically important clinical entity.  相似文献   

8.
The disruption of Janus kinase 2 (JAK2) signaling regulation by its point mutation, V617F, is involved in various myeloproliferative disorders (MPDs). JAK2 V617F mutant induced constitutive activation of Akt when erythropoietin receptor (EpoR) was coexpressed; however, the physiological role of Akt activation in MPDs has not been elucidated. LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, inhibited Akt activation and induced apoptotic cell death in cells expressing JAK2 V617F mutant and EpoR. Previously, it has been shown that the phosphorylation at Y479 in EpoR is critical for the interaction with PI3K, an upstream molecule of Akt. Hence, EpoR mutant with a point mutation of Y479F, which fails to activate Akt, is useful for addressing the role of Akt activation in JAK2 V617F mutant-induced tumorigenesis. Interestingly, under the expression of EpoR Y479F mutant, JAK2 V617F mutant failed to exhibit potent anti-apoptotic activity. In addition, JAK2 V617F mutant-induced phosphorylation of CREB and GSK-3β was significantly decreased in cells expressing EpoR Y479F mutant, resulting in the downregulation of Bcl-XL and Mcl-1 expression. Furthermore, compared with when nude mice were inoculated with cells expressing JAK2 V617F mutant and EpoR, the lifespan of nude mice inoculated with cells expressing JAK2 V617F mutant and EpoR Y479F mutant was effectively prolonged. Taken together, it was clarified that PI3K-Akt activation through the phosphorylation of EpoR at Y479 is required for oncogenic signaling of JAK2 V617F mutant and that targeted disruption of this pathway has therapeutic utility.  相似文献   

9.
10.
11.
Constitutive activation of the EPO/JAK2 signaling cascade has recently been implicated in a variety of myeloproliferative disorders including polycythemia vera, essential thrombocythemia and myelofibrosis. In an effort to uncover therapeutic potential of blocking the EPO/JAK2 signaling cascade, we sought to discover selective inhibitors that block the kinase activity of JAK2. Herein, we describe the discovery and structure based optimization of a novel series of 2-amino-pyrazolo[1,5-a]pyrimidines that exhibit potent inhibition of JAK2.  相似文献   

12.
The JAK2 V617F mutation present in over 95% of Polycythemia Vera patients and in 50% of Essential Thrombocythemia and Primary Myelofibrosis patients renders the kinase constitutively active. In the absence of a three-dimensional structure for the full-length protein, the mechanism of activation of JAK2 V617F has remained elusive. In this study, we used functional mutagenesis to investigate the involvement of the JH2 αC helix in the constitutive activation of JAK2 V617F. We show that residue F595, located in the middle of the αC helix of JH2, is indispensable for the constitutive activity of JAK2 V617F. Mutation of F595 to Ala, Lys, Val or Ile significantly decreases the constitutive activity of JAK2 V617F, but F595W and F595Y are able to restore it, implying an aromaticity requirement at position 595. Substitution of F595 to Ala was also able to decrease the constitutive activity of two other JAK2 mutants, T875N and R683G, as well as JAK2 K539L, albeit to a lower extent. In contrast, the F595 mutants are activated by erythropoietin-bound EpoR. We also explored the relationship between the dimeric conformation of EpoR and several JAK2 mutants. Since residue F595 is crucial to the constitutive activation of JAK2 V617F but not to initiation of JAK2 activation by cytokines, we suggest that small molecules that target the region around this residue might specifically block oncogenic JAK2 and spare JAK2 wild-type.  相似文献   

13.
14.
The report of Janus Kinase 2 (JAK2) mutations in myeloid malignancies with high frequency in myeloproliferative neoplasms has been well known since 2005. By monitoring allele burden, it is found that the expression of JAK2V617F mutation is increasing significantly from essential thrombocytosis to polycythemia vera. Furthermore, JAK2 abnormalities are reported in the majority of unexplained thrombotic episodes. Thalassemic syndromes are characterized by ineffective erythropoiesis and thrombocytosis, mainly due to splenectomy. The high incidence of thromboembolic events has led to the identification of a prothrombotic state in these patients. The contribution of JAK2 mutations to the hypercoagulable state of thalassemic patients is still unknown. Furthermore, the potential role of Janus Kinase mutations in hepcidin expression and consequently in ineffective erythropoiesis is still under investigation. This study was scheduled to determine whether the presence of JAK2V617F mutation in thalassemic patients is associated with thrombocytosis. We studied 20 patients DNA with beta-thalassemia for JAK2V617F mutation by using RG-PCR method. None of the patients were positive for this particular mutation. More studies are needed to prove the role of JAK2 in ineffective erythropoiesis, iron metabolism and thrombocytosis and to determine if using JAK2 inhibitors in thalassemic patients can be a potential therapeutic option.  相似文献   

15.
The receptor-associated protein tyrosine kinases JAK1 and JAK2 are both required for the interferon (IFN)-gamma response. The effects of expressing kinase-negative JAK mutant proteins on signal transduction in response to IFN-gamma in wild-type cells and in mutant cells lacking either JAK1 or JAK2 have been analysed. In cells lacking endogenous JAK1 the expression of a transfected kinase-negative JAK1 can sustain substantial IFN-gamma-inducible gene expression, consistent with a structural as well as an enzymic role for JAK1. Kinase-negative JAK2, expressed in cells lacking endogenous JAK2, cannot sustain IFN-gamma-inducible gene expression, despite low level activation of STAT1 DNA binding activity. When expressed in wild-type cells, kinase-negative JAK2 acts as a dominant-negative inhibitor of the IFN-gamma response. Further analysis of the JAK/STAT pathway suggests a model for the IFN-gamma response in which the initial phosphorylation of JAK1 and JAK2 is mediated by JAK2, whereas phosphorylation of the IFN-gamma receptor is normally carried out by JAK1. The efficient phosphorylation of STAT 1 in the receptor-JAK complex may again depend on JAK2. Interestingly, a JAK1-dependent signal, in addition to STAT1 activation, appears to be required for the expression of the antiviral state.  相似文献   

16.
The tyrosine kinase Janus kinase 2 (JAK2) transduces signaling for the majority of known cytokine receptor family members and is constitutively activated in some cancers. Here we examine the mechanisms by which the adapter proteins SH2-Bbeta and APS regulate the activity of JAK2. We show that like SH2-Bbeta, APS binds JAK2 at multiple sites and that binding to phosphotyrosine 813 is essential for APS to increase active JAK2 and to be phosphorylated by JAK2. Binding of APS to a phosphotyrosine 813-independent site inhibits JAK2. Both APS and SH2-Bbeta increase JAK2 activity independent of their N-terminal dimerization domains. SH2-Bbeta-induced increases in JAK2 dimerization require only the SH2 domain and only one SH2-Bbeta to be bound to a JAK2 dimer. JAK2 mutations and truncations revealed that amino acids 809 to 811 in JAK2 are a critical component of a larger regulatory region within JAK2, most likely including amino acids within the JAK homology 1 (JH1) and JH2 domains and possibly the FERM domain. Together, our data suggest that SH2-Bbeta and APS do not activate JAK2 as a consequence of their own dimerization, recruitment of an activator of JAK2, or direct competition with a JAK2 inhibitor for binding to JAK2. Rather, they most likely induce or stabilize an active conformation of JAK2.  相似文献   

17.
JAK protein tyrosine kinases: their role in cytokine signalling   总被引:10,自引:0,他引:10  
Protein tyrosine kinases (PTKs) are integral components of the cellular machinery that mediates the transduction and/or processing of many extra- and intracellular signals. Members of the JAK family of intracellular PTKs (JAK1, JAK2 and TYK2) are characterized by the possession of a PTK-related domain and five additional homology domains, in addition to a classical PTK domain. An important breakthrough in the understanding of JAK kinases function(s) has come from the recent observations that many cytokine receptors compensate for their lack of a PTK domain by utilizing members of the JAK family for signal transduction.  相似文献   

18.
19.
The tyrosine kinase Janus kinase 2 (JAK2) binds to the majority of the known members of the cytokine family of receptors. Ligand-receptor binding leads to activation of the associated JAK2 molecules, resulting in rapid autophosphorylation of multiple tyrosines within JAK2. Phosphotyrosines can then serve as docking sites for downstream JAK2 signaling molecules. Despite the importance of these phosphotyrosines in JAK2 function, only a few sites and binding partners have been identified. Using two-dimensional phosphopeptide mapping and a phosphospecific antibody, we identified tyrosine 813 as a site of JAK2 autophosphorylation of overexpressed JAK2 and endogenous JAK2 activated by growth hormone. Tyrosine 813 is contained within a YXXL sequence motif associated with several other identified JAK2 phosphorylation sites. We show that phosphorylation of tyrosine 813 is required for the SH2 domain-containing adapter protein SH2-B beta to bind JAK2 and to enhance the activity of JAK2 and STAT5B. The homologous tyrosine in JAK3, tyrosine 785, is autophosphorylated in response to interleukin-2 stimulation and is required for SH2-B beta to bind JAK3. Taken together these data strongly suggest that tyrosine 813 is a site of autophosphorylation in JAK2 and is the SH2-B beta-binding site within JAK2 that is required for SH2-B beta to enhance activation of JAK2.  相似文献   

20.
The characterisation of ligands that activate the JAK/STAT pathway has the potential to throw light onto a comparatively poorly understood aspect of this important signal transduction cascade. Here, we describe our analysis of the only invertebrate JAK/STAT pathway ligands identified to date, the Drosophila unpaired-like family. We show that upd2 is expressed in a pattern essentially identical to that of upd and demonstrate that the proteins encoded by this region activate JAK/STAT pathway signalling. Mutational analysis demonstrates a mutual semi-redundancy that can be visualised in multiple tissues known to require JAK/STAT signalling. In order to better characterise the in vivo function of these ligands, we developed a reporter based on a natural JAK/STAT pathway responsive enhancer and show that ectopic upd2 expression can effectively activate the JAK/STAT pathway. While both Upd and Upd2 are secreted JAK/STAT pathway agonists, tissue culture assays show that the signal-sequences of Upd and Upd2 confer distinct properties, with Upd associated primarily with the extracellular matrix and Upd2 secreted into the media. The differing biophysical characteristics identified for Upd-like molecules have implications for their function in vivo and adds another aspect to our understanding of cytokine signalling in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号