首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volatile anesthetics (VAs) cause profound neurological effects, including reversible loss of consciousness and immobility. Despite their widespread use, the mechanism of action of VAs remains one of the unsolved puzzles of neuroscience [ [1] and [2] ]. Genetic studies in Caenorhabditis elegans [ [3] and [4] ], Drosophila [ [3] and [5] ], and mice [ [6] , [7] , [8] and [9] ] indicate that ion channels controlling the neuronal resting membrane potential (RMP) also control anesthetic sensitivity. Leak channels selective for K+ [ [10] , [11] , [12] and [13] ] or permeable to Na+ [14] are critical for establishing RMP. We hypothesized that halothane, a VA, caused immobility by altering the neuronal RMP. In C. elegans, halothane-induced immobility is acutely and completely reversed by channelrhodopsin-2 based depolarization of the RMP when expressed specifically in cholinergic neurons. Furthermore, hyperpolarizing cholinergic neurons via halorhodopsin activation increases sensitivity to halothane. The sensitivity of C. elegans to halothane can be altered by 25-fold by either manipulation of membrane conductance with optogenetic methods or generation of mutations in leak channels that set the RMP. Immobility induced by another VA, isoflurane, is not affected by these treatments, thereby excluding the possibility of nonspecific hyperactivity. The sum of our data indicates that leak channels and the RMP are important determinants of halothane-induced general anesthesia.  相似文献   

2.
Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeric DNA is synthesized by telomerase, which is expressed only at the early stages of development [ [1] and [2] ]. To become malignant, any cell has to be able to replenish telomeres [3]. Thus, understanding how telomere length is monitored has significant medical implications, especially in the fields of aging and cancer. In yeast, telomerase is constitutively active. A large network of genes participates in controlling telomere length [ [4] , [5] , [6] , [7] and [8] ]. Tor1 and Tor2 (targets of rapamycin [9]) are two similar kinases that regulate cell growth [10]. Both can be found as part of the TOR complex 1 (TORC1 [11]), which coordinates the response to nutrient starvation and is sensitive to rapamycin [12]. The rapamycin-insensitive TOR complex 2 (TORC2) contains only Tor2 and regulates actin cytoskeleton polarization [13]. Here we provide evidence for a role of TORC1 in telomere shortening upon starvation in yeast cells. The TORC1 signal is transduced by the Gln3/Gat1/Ure2 pathway, which controls the levels of the Ku heterodimer, a telomere regulator. We discuss the potential implications for the usage of rapamycin as a therapeutic agent against cancer and the effect that calorie restriction may have on telomere length.  相似文献   

3.
In migrating cells, the relative importance of myosin II contractility for cell rear retraction varies [ [1] , [2] , [3] , [4] , [5] , [6] , [7] , [8] , [9] , [10] , [11] and [12] ]. However, in myosin II-inhibited polarizing cells, actin organization is compromised [ [13] , [14] , [15] , [16] , [17] and [18] ]; thus it remains unclear whether myosin II is simply required for correct actin arrangement or also directly drives rear retraction [9]. Ascaris sperm cells lack actin and associated motors, and depolymerization of major sperm protein is instead thought to pull the cell rear forward [ [19] and [20] ]. Opposing views exist on whether actin could also have this function [ [19] and [20] ] and has not been directly experimentally sought. We probe function at high temporal resolution in polarizing fibroblasts that establish migration by forming the cell rear first [ [9] , [15] and [21] ]. We show that in cells with correctly organized actin, that actin filament depolymerization directly drives retraction of the rear margin to polarize cells and spatially accounts for most cell rear retraction during established migration. Myosin II contractility is required early, to form aligned actin bundles that are needed for polarization, and also later to maintain bundle length that ensures directed protrusion at the cell front. Our data imply a new mechanism: actin depolymerization-based force retracts the cell rear to polarize cells with no direct contribution from myosin II contractility.  相似文献   

4.
DNA analysis is making a valuable contribution to the understanding of human evolution [1]. Much attention has focused on mitochondrial DNA (mtDNA) [2] and the Y chromosome [3] and [4], both of which escape recombination and so provide information on maternal and paternal lineages, respectively. It is often assumed that the polymorphisms observed at loci on mtDNA and the Y chromosome are selectively neutral and, therefore, that existing patterns of molecular variation can be used to deduce the histories of populations in terms of drift, population movements, and cultural practices. The coalescence of the molecular phylogenies of mtDNA and the Y chromosome to recent common ancestors in Africa [5] and [6], for example, has been taken to reflect a recent origin of modern human populations in Africa. An alternative explanation, though, could be the recent selective spread of mtDNA and Y chromosome haplotypes from Africa in a population with a more complex history [7]. It is therefore important to establish whether there are selective differences between classes (haplotypes) of mtDNA and Y chromosomes and, if so, whether these differences could have been sufficient to influence the distributions of haplotypes in existing populations. A precedent for this hypothesis has been established for mtDNA in that one mtDNA background increases susceptibility to Leber hereditary optic neuropathy [8]. Although studies of nucleotide diversity in global samples of Y chromosomes have suggested an absence of recent selective sweeps or bottlenecks [9], selection may, in principle, be very important for the Y chromosome because it carries several loci affecting male fertility [10] and [11] and as many as 5% of males are infertile [11] and [12]. Here, we show that one class of infertile males, PRKX/PRKY translocation XX males, arises predominantly on a particular Y haplotypic background. Selection is, therefore, acting on Y haplotype distributions in the population.  相似文献   

5.
Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2] and [3]. Historically these enzymes received their name from ‘pigment 450’ due to the unusual position of the Soret band in UV–vis absorption spectra of the reduced CO-saturated state [4] and [5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other ‘P450-like heme enzymes’ such as nitric oxide synthase and chloroperoxidase, the phenomenological term ‘cytochrome P450’ is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420 nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle.  相似文献   

6.
Dysregulation of microRNAs in cancer: Playing with fire   总被引:2,自引:0,他引:2  
  相似文献   

7.
Cortactin is involved in invadopodia and podosome formation [1], pathogens and endosome motility [2], and persistent lamellipodia protrusion [ [3] and [4] ]; its overexpression enhances cellular motility and metastatic activity [ [5] , [6] , [7] and [8] ]. Several mechanisms have been proposed to explain cortactin's role in Arp2/3-driven actin polymerization [ [9] and [10] ], yet its direct role in cell movement remains unclear. We use a biomimetic system to study the mechanism of cortactin-mediated regulation of actin-driven motility [11]. We tested the role of different cortactin variants that interact with Arp2/3 complex and actin filaments distinctively. We show that wild-type cortactin significantly enhances the bead velocity at low concentrations. Single filament experiments show that cortactin has no significant effect on actin polymerization and branch stability, whereas it strongly affects the branching rate driven by Wiskott-Aldrich syndrome protein (WASP)-VCA fragment and Arp2/3 complex. These results lead us to propose that cortactin plays a critical role in translating actin polymerization at a bead surface into motion, by releasing WASP-VCA from the new branching site. This enhanced release has two major effects: it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.  相似文献   

8.
9.
10.
A concentration gradient of the GTP-bound form of the GTPase Ran across nuclear pores is essential for the transport of many proteins and nucleic acids between the nuclear and cytoplasmic compartments of eukaryotic cells [1], [2], [3] and [4]. The mechanisms responsible for the dynamics and maintenance of this Ran gradient have been unclear. We now show that Ran shuttles between the nucleosol and cytosol, and that cytosolic Ran accumulates rapidly in the nucleus in a saturable manner that is dependent on temperature and on the guanine-nucleotide exchange factor RCC1. Nuclear import in digitonin-permeabilized cells in the absence of added factors was minimal. The addition of energy and nuclear transport factor 2 (NTF2) [5] was sufficient for the accumulation of Ran in the nucleus. An NTF2 mutant that cannot bind Ran [6] was unable to facilitate Ran import. A GTP-bound form of a Ran mutant that cannot bind NTF2 was not a substrate for import. A dominant-negative importin-β mutant inhibited nuclear import of Ran, whereas addition of transportin, which accumulates in the nucleus, enhanced NTF2-dependent Ran import. We conclude that NTF2 functions as a transport receptor for Ran, permitting rapid entry into the nucleus where GTP-GDP exchange mediated by RCC1 [7] converts Ran into its GTP-bound state. The Ran–GTP can associate with nuclear Ran-binding proteins, thereby creating a Ran gradient across nuclear pores.  相似文献   

11.
The last decade has seen a burgeoning of reports associating brain structure with specific skills and traits (e.g., [ [1] , [2] , [3] , [4] , [5] , [6] , [7] and [8] ]). Although these cross-sectional studies are informative, cause and effect are impossible to establish without longitudinal investigation of the same individuals before and after an intervention. Several longitudinal studies have been conducted (e.g., [ [9] , [10] , [11] , [12] , [13] , [14] , [15] , [16] , [17] and [18] ]); some involved children or young adults, potentially conflating brain development with learning, most were restricted to the motor domain, and all concerned relatively short timescales (weeks or months). Here, by contrast, we utilized a unique opportunity to study average-IQ adults operating in the real world as they learned, over four years, the complex layout of London's streets while training to become licensed taxi drivers. In those who qualified, acquisition of an internal spatial representation of London was associated with a selective increase in gray matter (GM) volume in their posterior hippocampi and concomitant changes to their memory profile. No structural brain changes were observed in trainees who failed to qualify or control participants. We conclude that specific, enduring, structural brain changes in adult humans can be induced by biologically relevant behaviors engaging higher cognitive functions such as spatial memory, with significance for the “nature versus nurture” debate.  相似文献   

12.
13.
Parasitic plants develop a haustorium that intrudes host tissues.In roots of transgenic PRb-1b-GUS tobacco the expression ofthe chimeric gene was prominent nearOrobancheinfection. Theexpression of the pathogenesis related (PR) protein gene inOrobanche-infectedroots indicates thatOrobanchereleases appropriate elicitors,and that the susceptible plant does senseOrobancheinvasion.TheOrobanche-responsive promoter may be a useful tool in engineeringresistances to this parasitic weed.Copyright 1998 Annals ofBotany Company Haustorium,Nicotiana tabacum, Orobanche aegyptiaca, parasitic plants, PR proteins, tobacco.  相似文献   

14.
The photosynthetic gene rbcL has been lost or dramatically altered in some lineages of nonphotosynthetic parasitic plants, but the dynamics of these events following loss of photosynthesis and whether rbcL has sustained functionally significant changes in photosynthetic parasitic plants are unknown. To assess the changes to rbcL associated with the loss of functional constraints for photosynthesis, nucleotide sequences from nonparasitic and parasitic plants of Scrophulariales were used for phylogeny reconstruction and character analysis. Plants in this group display a broad range of parasitic abilities, from photosynthetic ("hemiparasites") to nonphotosynthetic ("holoparasites"). With the exception of Conopholis (Orobanchaceae), the rbcL locus is present in all parasitic plants of Scrophulariales examined. Several holoparasitic genera included in this study, including Boschniakia, Epifagus, Orobanche, and Hyobanche, have rbcL pseudogenes. However, the holoparasites Alectra orobanchoides, Harveya capensis, Harveya purpurea, Lathraea clandestina, Orobanche corymbosa, O. fasciculata, and Striga gesnerioides have intact open reading frames (ORFs) for the rbcL gene. Phylogenetic hypotheses based on rbcL are largely in agreement with those based on sequences of the nonphotosynthetic genes rps2 and matK and show a single origin of parasitism, and loss of photosynthesis and pseudogene formation have been independently derived several times in Scrophulariales. The mutations in rbcL in nonparasitic and hemiparasitic plants would result in largely conservative amino acid substitutions, supporting the hypothesis that functional proteins can experience only a limited range of changes, even in minimally photosynthetic plants. In contrast, ORFs in some holoparasites had many previously unobserved missense substitutions at functionally important amino acid residues, suggesting that rbcL genes in these plants have evolved under relaxed or altered functional constraints.   相似文献   

15.
Kinesins and myosins transport cargos to specific locations along microtubules and actin filaments, respectively. The relative contribution of the two transport systems for cell polarization varies extensively in different cell types, with some cells relying exclusively on actin-based transport while others mainly use microtubules. Using fission yeast, we asked whether one transport system can substitute for the other. In this organism, microtubules and actin cables both contribute to polarized growth by transporting cargos to cell poles, but with distinct roles: microtubules transport landmarks to label cell poles for growth and actin assembly but do not directly contribute to the growth process [1]. Actin cables serve as tracks for myosin V delivery of growth vesicles to cell poles [ [2] , [3] and [4] ]. We engineered a chimera between the motor domain of the kinesin 7 Tea2 and the globular tail of the myosin V Myo52, which we show transports Ypt3, a myosin cargo receptor, to cell poles along microtubules. Remarkably, this chimera restores polarized growth and viability to cells lacking actin cables. It also bypasses the normal microtubule-dependent marking of cell poles for polarized growth, but not for other functions. Thus, a synthetic motor protein successfully redirects cargos along a distinct cytoskeletal route.

Video Abstract


16.
Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.

Three-dimensional image reconstruction visualized the spatial organization of cell types in the haustoria of the Orobanchaceae parasitic plants Striga hermonthica and Phtheirospermum japonicum.  相似文献   

17.
The Rhinanthoid clade of the family Orobanchaceae comprises plants displaying a hemiparasitic or holoparasitic strategy of resource acquisition. Some of its species (mainly Rhinanthus spp.) are often used as models for studies of hemiparasite physiology. Although there is a well‐developed concept covering their physiological processes, most recent studies have neglected the existence of hydathode trichomes present on leaves of these hemiparasitic plants. As a first step for the proposed integration of these structures in the theory of physiological processes of the hemiparasites, we described the outer micromorphology and ultrastructure of the hydathode trichomes on leaves of hemiparasitic Rhinanthus alectorolophus and Odontites vernus with scanning and transmission electron microscopy (SEM and TEM, respectively). The TEM inspections of both types of trichome revealed typical ultrastructural features: labyrinthine cell wall, high content of cytoplasm in cells with numerous mitochondria and presence of plasmodesmata. All these features indicate high metabolic activity complying with their function as glandular trichomes actively secreting water. The active secretion of water by the hydathode trichomes (evidence for which is summarised here) also presents a possible mechanism explaining results of previous gas exchange measurements detecting high dark respiration and transpiration rates and a tight inter‐correlation between them in hemiparasitic Orobanchaceae. In addition, this process is hypothesised to have allowed multiple evolutionary transitions from facultative to obligate hemiparasitism and unique xylem‐feeding holoparasitism of Lathraea with a long‐lived underground stage featuring a rhizome covered by scales of leaf origin.  相似文献   

18.
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.

Subtilases specifically expressed in intrusive cells regulate auxin-mediated host–parasite connections in the parasitic plant Phtheirospermum japonicum.  相似文献   

19.
20.
【目的】根寄生植物持续掠夺禾草体内营养物质成为禾草生长过程中的生物逆境,禾草内生真菌提高冷季型禾草对生物和非生物逆境耐受能力。然而,有关禾草内生真菌对根寄生逆境下禾草生理过程调控作用的研究鲜有报道。【方法】开展温室盆栽试验,以带菌(E+)和不带菌(E-)紫花针茅为研究对象,研究甘肃马先蒿不同寄生密度对紫花针茅抗氧化酶活性、渗透调节物质和根系活力影响的动态变化规律。【结果】甘肃马先蒿寄生显著增加紫花针茅抗氧化酶活性、丙二醛和脯氨酸含量,而根系活力却快速降低;高密度寄生紫花针茅植株生理特性指标显著高于低密度寄生或自然生长植株;同时,E+紫花针茅抗氧化酶活性、脯氨酸含量和根系活力显著高于E-植株,而E-植株丙二醛含量显著高于E+植株。【结论】禾草内生真菌通过增强抗氧化酶活性、调节细胞膜透性和增强根系生长能力的途径提高紫花针茅对根寄生逆境的耐受能力,利用植物替代方法带菌紫花针茅可以作为一种生物防治手段用于防控根寄生杂草。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号