首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Zhang L  Yu W  Han TZ  Xie W  Luo Y 《生理学报》2006,58(5):442-448
短期强化训练能否建立可靠的空间长时记忆?用不同训练方式建立空间记忆后,大鼠海马结构NMDA受体的表达发生怎样的变化?目前尚未见明确报道。本研究应用Morris水迷宫方法分别采用以下模式对大鼠进行训练:空间长时记忆训练模式(LT组)、空间短时记忆训练模式(ST组)以及短期强化训练模式(SRT组),对不同训练模式建立的空间记忆进行了比较,应用免疫荧光组织化学方法检测各组大鼠海马结构NMDA/NR1受体表达的变化。结果表明,Morris水迷宫训练过程中,LT和SRT组大鼠寻找站台的半均潜伏期和策略均无显著性差异:记忆检测发现,除LT组大鼠在站台所在象限的停留时间明显长于SRT组大鼠外,两组大鼠寻找站台的潜伏期和策略以及穿越站台的次数均无显著性差异。ST组大鼠海马结构NMDA/NR1的免疫反应强度与对照组相比,无显著差异。但是,LT和SRT组大鼠海马CA1区锥体细胞联及齿状回的颗粒细胞层NMDA/NR1免疫荧光反应都明显增强,两组之间比较无显著差异,但是两组分别与对照组和ST组相比均有显著性差异。上述结果提示,短期强化训练可建立与长期训练基本相同的空间长时记忆。大鼠海马结构CA1区和齿状回NMDA受体表达的增加,可能是空间长时记忆形成的机制之一。  相似文献   

2.
Synthetic corticosteroids, such as dexamethasone, are frequently administered to pregnant women at risk for preterm delivery. Endogenous corticosteroids are essential for normal development, but exposure to therapeutic doses at critical developmental stages may have adverse effects on the central nervous system. Major concern has arisen about long-term effects of corticosteroid treatment on brain plasticity, particularly in the hippocampus. Therefore, we analyzed the molecular, cellular, and behavioral effects of prenatal dexamethasone treatment on the adult hippocampus. Pregnant mice were treated at embryonic day 15.5 with a single dose of dexamethasone or saline. Adult offspring was analyzed for hippocampal neuron loss, cell proliferation, and NMDA receptor subunit expression. Hippocampal function was assessed in the Morris water maze and synaptic plasticity in the CA1 field by determining frequency dependence of LTP and LTD in hippocampal slices. Prenatal dexamethasone treatment decreased hippocampal cell proliferation in the dentate gyrus. Treated mice showed reduced LTD, impaired spatial learning, and a marked reduction in lifespan. Our data show long-term adverse effects of prenatal dexamethasone treatment on hippocampal function in mice and suggest accelerated aging. These findings indicate that it is important to be restrictive with corticosteroid administration during fetal development because of the lifelong consequences.  相似文献   

3.
BackgroundHippocampus plays critical roles in drug addiction. Cocaine-induced modifications in dopamine receptor function and the downstream signaling are important regulation mechanisms in cocaine addiction. Rac regulates actin filament accumulation while Cdc42 stimulates the formation of filopodia and neurite outgrowth. Based on the region specific roles of small GTPases in brain, we focused on the hippocampal subregions to detect the regulation of Cdc42 signaling in long-term morphological and behavioral adaptations to cocaine.MethodsGenetically modified mouse models of Cdc42, dopamine receptor D1 (D1R) and D2 (D2R) and expressed Cdc42 point mutants that are defective in binding to and activation of its downstream effector molecules PAK and N-WASP were generated, respectively, in CA1 or dentate gyrus (DG) subregion.ResultsCocaine induced upregulation of Cdc42 signaling activity. Cdc42 knockout or mutants blocked cocaine-induced increase in spine plasticity in hippocampal CA1 pyramidal neurons, leading to a decreased conditional place preference (CPP)-associated memories and spatial learning and memory in water maze. Cdc42 knockout or mutants promoted cocaine-induced loss of neurogenesis in DG, leading to a decreased CPP-associated memories and spatial learning and memory in water maze. Furthermore, by using D1R knockout, D2R knockout, and D2R/Cdc42 double knockout mice, we found that D2R, but not D1R, regulated Cdc42 signaling in cocaine-induced neural plasticity and behavioral changes.ConclusionsCdc42 acts downstream of D2R in the hippocampus and plays an important role in cocaine-induced neural plasticity through N-WASP and PAK-LIMK-Cofilin, and Cdc42 signaling pathway correlatively links specific brain regions (CA1, dentate gyrus) to cocaine-induced CPP behavior.  相似文献   

4.
The present review summarizes converging evidence from animal and human studies that an early target of amyloid pathology is synaptic activity in the DG (dentate gyrus)/CA3 network. We briefly review the computational significance of the DG/CA3 network in the encoding of episodic memory and present new evidence that the CA3/DG pattern of activation is compromised in a mouse model of amyloid pathology. In addition, we present a new behavioural method to test the prediction that amyloid-related synaptic pathology will disrupt the formation of an integrated episodic-like (what, where and when) memory in mice.  相似文献   

5.
Whole-brain irradiation is used for the treatment of brain tumors, but can it also induce neural changes, with progressive dementia occurring in 20-50% of long-term survivors. The present study investigated whether 45 Gy of whole-brain irradiation delivered to 12-month-old Fischer 344 x Brown Norway rats as nine fractions over 4.5 weeks leads to impaired Morris water maze (MWM) performance 12 months later. Compared to sham-irradiated rats, the irradiated rats demonstrated impaired MWM performance. The relative levels of the NR1 and NR2A but not the NR2B subunits of the NMDA receptor were significantly higher in hippocampal CA1 of irradiated rats compared to control rats. No significant differences were detected for these NMDA subunits in CA3 or dentate gyrus. Further analysis of CA1 revealed that the relative levels of the GluR1 and GluR2 subunits of the AMPA receptor and synaptophysin were not altered by whole-brain irradiation. In summary, a clinically relevant regimen of fractionated whole-brain irradiation led to significant impairments in spatial learning and reference memory and alterations in the relative levels of subunits of the NMDA, but not the AMPA, receptors in hippocampal CA1. These findings suggest for the first time that radiation-induced cognitive impairments may be associated with alterations in glutamate receptor composition.  相似文献   

6.
The dentate gyrus (DG) is the central input region to the hippocampus and is known to play an important role in learning and memory. Previous studies have shown that prenatal alcohol is associated with hippocampal-dependent learning deficits and a decreased ability to elicit long-term potentiation (LTP) in the DG in adult animals. Given that activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade by NMDA receptors is required for various forms of learning and memory, as well as LTP, in hippocampal regions, including the DG, we hypothesized that fetal alcohol-exposed adult animals would have deficits in hippocampal NMDA receptor-dependent ERK1/2 activation. We used immunoblotting and immunohistochemistry techniques to detect NMDA-stimulated ERK1/2 activation in acute hippocampal slices prepared from adult fetal alcohol-exposed mice. We present the first evidence linking prenatal alcohol exposure to deficits in NMDA receptor-dependent ERK1/2 activation specifically in the DG of adult offspring. This deficit may account for the LTP deficits previously observed in the DG, as well as the life-long cognitive deficits, associated with prenatal alcohol exposure.  相似文献   

7.
Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis.  相似文献   

8.
Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.  相似文献   

9.
Tyrosine phosphorylation of the NMDA receptor has been implicated in the regulation of the receptor channel. We investigated the effects of transient (15 min) global ischemia on tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B, and the interaction of NR2 subunits with the SH2 domain of phosphatidylinositol 3-kinase (PI3-kinase) in vulnerable CA1 and resistant CA3/dentate gyrus of the hippocampus. Transient ischemia induced a marked increase in the tyrosine phosphorylation of NR2A in both regions. The tyrosine phosphorylation of NR2B in CA3/dentate gyrus after transient ischemia was sustained and greater than that in CA1. PI3-kinase p85 was co-precipitated with NR2B after transient global ischemia. The SH2 domain of the p85 subunit of PI3-kinase bound to NR2B, but not to NR2A. Binding to NR2B was increased following ischemia and the increase in binding in CA3/dentate gyrus (4.5-fold relative to sham) was greater than in CA1 (1.7-fold relative to sham) at 10 min of reperfusion. Prior incubation of proteins with an exogenous protein tyrosine phosphatase or with a phosphorylated peptide (pYAHM) prevented binding. The results suggest that sustained increases in tyrosine phosphorylation and increased interaction of NR2B with the SH2 domain of PI3-kinase may contribute to altered signal transduction in the CA3/dentate gyrus after transient ischemia.  相似文献   

10.
Li Q  Bian S  Hong J  Kawase-Koga Y  Zhu E  Zheng Y  Yang L  Sun T 《PloS one》2011,6(10):e26000
The adult hippocampus consists of the dentate gyrus (DG) and the CA1, CA2 and CA3 regions and is essential for learning and memory functions. During embryonic development, hippocampal neurons are derived from hippocampal neuroepithelial cells and dentate granular progenitors. The molecular mechanisms that control hippocampal progenitor proliferation and differentiation are not well understood. Here we show that noncoding microRNAs (miRNAs) are essential for early hippocampal development in mice. Conditionally ablating the RNAase III enzyme Dicer at different embryonic time points utilizing three Cre mouse lines causes abnormal hippocampal morphology and affects the number of hippocampal progenitors due to altered proliferation and increased apoptosis. Lack of miRNAs at earlier stages causes early differentiation of hippocampal neurons, in particular in the CA1 and DG regions. Lack of miRNAs at a later stage specifically affects neuronal production in the CA3 region. Our results reveal a timing requirement of miRNAs for the formation of specific hippocampal regions, with the CA1 and DG developmentally hindered by an early loss of miRNAs and the CA3 region to a late loss of miRNAs. Collectively, our studies indicate the importance of the Dicer-mediated miRNA pathway in hippocampal development and functions.  相似文献   

11.
Light microscopic study of hippocampal sub-regions demonstrated significant number of degenerated nerve cell bodies in the CA3, CA4 and dentate gyrus(Dg) areas of sodium fluoride administered adult female mice. Ultrastructural studies revealed neurodegenrative characteristics like involution of cell membranes, swelling of mitochondria, clumping of chromatin material etc, can be observed in cell bodies of CA3, CA4 and dentate gyrus (Dg). Fluoride intoxicated animals also performed poorly in motor co-ordination tests and maze tests. Inability to perform well increased with higher fluoride concentration in drinking water.  相似文献   

12.
Neurogenesis occurs in dentate gyrus of adult hippocampus under the influence of various mitogenic factors. Growth factors besides instigating the proliferation of neuronal progenitor cells (NPCs) in dentate gyrus, also supports their differentiation to cholinergic neurons. In the present study, an attempt has been made to investigate the neurotrophic effect of bFGF in Kainic acid (KA) induced cognitive dysfunction in rats. Stereotaxic lesioning using (KA) was performed in hippocampal CA3 region of rat's brain. Four-weeks post lesioning rats were assessed for impairment in learning and memory using Y maze followed by bFGF infusion in dentate gyrus region. The recovery was evaluated after bFGF infusion using neurochemical, neurobehavioural and immunohistochemical approaches and compared with lesioned group. Significant impairment in learning and memory (P < 0.01) observed in lesioned animals, four weeks post lesioning exhibited significant restoration (P < 0.001) following bFGF infusion twice at one and four week post lesion. The bFGF infused animals exhibited recovery in hippocampus cholinergic (76%)/ dopaminergic (46%) receptor binding and enhanced Choline acetyltransferase (ChAT) immunoreactivity in CA3 region. The results suggest restorative potential of bFGF in cognitive dysfunctions, possibly due to mitogenic effect on dentate gyrus neurogenic area leading to generation and migration of newer cholinergic neurons.  相似文献   

13.
In the mammalian hippocampus, the dentate gyrus (DG) is characterized by sparse and powerful unidirectional projections to CA3 pyramidal cells, the so-called mossy fibers. Mossy fiber synapses appear to duplicate, in terms of the information they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the dentate gyrus and to CA3. Computational models of episodic memory have hypothesized that the function of the mossy fibers is to enforce a new, well separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference produced by the traces of older memories already stored on CA3 recurrent collateral connections. Can this hypothesis apply also to spatial representations, as described by recent neurophysiological recordings in rats? To address this issue quantitatively, we estimate the amount of information DG can impart on a new CA3 pattern of spatial activity, using both mathematical analysis and computer simulations of a simplified model. We confirm that, also in the spatial case, the observed sparse connectivity and level of activity are most appropriate for driving memory storage – and not to initiate retrieval. Surprisingly, the model also indicates that even when DG codes just for space, much of the information it passes on to CA3 acquires a non-spatial and episodic character, akin to that of a random number generator. It is suggested that further hippocampal processing is required to make full spatial use of DG inputs.  相似文献   

14.
Estrogen modulates NMDA receptors function in the brain. It increases both dendritic spine density and synapse number in the hippocampus, an effect that can be blocked by NMDA antagonist. In this study, we investigated the effect of 17beta-estradiol and progesterone treatment on NMDA receptors in ovariectomized rats. Two different doses were used for 10 weeks. Receptor autoradiography was done on brain sections using [(3)H] MK-801 as a ligand. Our results showed a significant increase in [(3)H] MK-801 binding in the dentate gyrus, CA3 and CA4 areas of the hippocampus of ovariectomized compared to sham operated rats. In addition, we observed similar changes in CA1. 17beta-estradiol treatment in both doses reduced the binding back to the normal level while progesterone treatment did not show any effect. Spatial reference memory was tested on Morris water maze task. Ovariectomy severely impaired spatial reference memory. Estradiol but not progesterone treatment significantly improved the memory performance of the ovariectomized rats. Low dose treatment showed better learning than high dose estrogen treatment. The decrease in the antagonist sites by estradiol treatment could result in an increase in the sensitivity of the hippocampus to the excitatory stimulation by glutamate system and hence the effect of estradiol on learning and memory. The changes of NMDA receptors in the hippocampus support the concept that estrogen-enhancing effect on spatial reference memory could be through the enhancing of NMDA function.  相似文献   

15.
Down syndrome (DS) is a high-incidence genetic pathology characterized by severe impairment of cognitive functions, including declarative memory. Impairment of hippocampus-dependent long-term memory in DS appears to be related to anatomo-functional alterations of the hippocampal trisynaptic circuit formed by the dentate gyrus (DG) granule cells - CA3 pyramidal neurons - CA1 pyramidal neurons. No therapies exist to improve cognitive disability in individuals with DS. In previous studies we demonstrated that pharmacotherapy with fluoxetine restores neurogenesis, granule cell number and dendritic morphology in the DG of the Ts65Dn mouse model of DS. The goal of the current study was to establish whether treatment rescues the impairment of synaptic connectivity between the DG and CA3 that characterizes the trisomic condition. Euploid and Ts65Dn mice were treated with fluoxetine during the first two postnatal weeks and examined 45–60 days after treatment cessation. Untreated Ts65Dn mice had a hypotrophyc mossy fiber bundle, fewer synaptic contacts, fewer glutamatergic contacts, and fewer dendritic spines in the stratum lucidum of CA3, the terminal field of the granule cell projections. Electrophysiological recordings from CA3 pyramidal neurons showed that in Ts65Dn mice the frequency of both mEPSCs and mIPSCs was reduced, indicating an overall impairment of excitatory and inhibitory inputs to CA3 pyramidal neurons. In treated Ts65Dn mice all these aberrant features were fully normalized, indicating that fluoxetine can rescue functional connectivity between the DG and CA3. The positive effects of fluoxetine on the DG-CA3 system suggest that early treatment with this drug could be a suitable therapy, possibly usable in humans, to restore the physiology of the hippocampal networks and, hence, memory functions.  相似文献   

16.
Akbari E  Naghdi N  Motamedi F 《Peptides》2007,28(3):650-656
The novel neuropeptides orexin-A and orexin-B derive from a common 130-amino acid precursor molecule (prepro-orexin), are mainly localized to neurons within and around the lateral hypothalamus, and exhibit high affinity to the closely related G-Protein-coupled receptors orexin 1 and 2 receptor (OX1R, OX2R). Orexinergic neurons send their axons to the hippocampal formation (CA1, CA2 and dentate gyrus), which expresses OX1Rs. Recent studies have shown that central administration of orexin-A and orexin-B have effects on learning and memory but literature concerning the role of orexinergic system in cognition remains controversial. More recently, antagonists have been described. The most potent and selective is SB-334867-A, which has an affinity of 40 nM at OX1R which is at least 50-fold selective over OX2R. It is likely that the intracerebroventricular (i.c.v.) administration may block OX1Rs in many brain regions. Previously we have shown that intra-CA1 injection of SB-334867-A impairs acquisition, consolidation and retrieval of spatial memory in MWM task. In the present study, the effect of pre-training, post-training and pre-probe of trial intra-DG (dentate gyrus) administration of SB-334867-A (1.5, 3, 6 microg/0.5 microl) on acquisition, consolidation and retrieval in a single-day testing version of MWM (Morris water maze) task was examined. Our results show impaired acquisition and consolidation of MWM task for SB-334867-A as compared with the control group. However, SB-334867-A had no effect on retrieval in spatial memory. Also, this antagonist had no effect on escape latency of a non-spatial visual discrimination task. Therefore, it seems that endogenous orexin-A and orexin-B, through DG OX1Rs, play an important role in spatial learning and memory in the rat.  相似文献   

17.
慢性复合应激增强大鼠空间学习和记忆能力   总被引:23,自引:0,他引:23  
Liu NB  Li H  Liu XQ  Sun CY  Cheng SR  Zhang MH  Liu SC  Wang WX 《生理学报》2004,56(5):615-619
本文观察了慢性复合应激对大鼠学习与记忆功能的影响。实验采用成年 Wistar 大鼠, 将其随机分成应激组和对照组。采用垂直旋转、睡眠剥夺、噪音刺激和夜间光照4 种应激原, 无规律地交替刺激动物 6 周, 每天6 h, 制作慢性复合应激动物模型。采用 Morris 水迷宫和 Y- 迷宫测试大鼠学习与记忆成绩,并用 Cresyl violet 染色法对大鼠海马结构进行神经细胞计数。结果显示,应激组动物慢性复合应激后, 在 Morris 水迷宫内寻找隐蔽平台所需的时间(潜伏期)比对照组的明显地短(P<0.05), 表明应激鼠的空间记忆能力明显强于对照鼠;在 Y- 迷宫内寻找安全区的正确率比对照组的明显地高(P<0.05), 表明应激鼠的明暗分辨学习能力明显强于对照鼠; 应激鼠慢性复合应激后, 其海马结构齿状回、CA3 和CA1 区神经细胞密度极明显地高于对照鼠(P<0.001)。这些结果提示, 慢性复合应激可增强大鼠空间记忆能力和明暗分辨学习能力。本文并对慢性复合应激模式增强大鼠学习和记忆能力的可能原因进行了讨论。  相似文献   

18.
Chong-Myung-Tang (CMT) is a multi-herbal formula that has been used to improve memory. However, the potential mechanism remains unknown. The present study investigated the effects of CMT (50, 100, and 200?mg/kg) on spatial memory of aged mice. The behavioral training tests indicated that 200?mg/kg CMT treatment can significantly improve spatial memory of aged mice in the Morris water maze. Moreover, cell survival was examined by injecting bromodeoxyuridine (BrdU) on the first three days. The result showed that 200?mg/kg CMT treatment significantly increased cell survival in the dentate gyrus. Cell proliferation was determined by injecting BrdU 2?h before the mice were killed. The result suggested that CMT treatments had no influence on cell proliferation in the dentate gyrus. Thus, an increase in cell survival in the dentate gyrus stimulated by CMT may be involved in the effect of CMT on spatial memory improvement.  相似文献   

19.
《Epigenetics》2013,8(7):434-439
We make strong memories of significant events in our lives which may serve to increase our resilience and adaptation capacity to deal with future challenges. It is well established that the neurotransmitter glutamate and the ERK MAPK intracellular signaling pathway play a principal role in memory formation. In addition, stress-associated hormones like glucocorticoids released during such events are known to strengthen formation of memories. But, how do these hormones work? Do they interact with the ERK MAPK pathway or otherwise? What are the more distal, epigenomic effects? We discovered in rats and mice that confrontation with a psychological challenge (e.g. forced swimming, Morris water maze) would lead, through NMDA-ERK signaling, to MSK1 and Elk-1 activation in dentate gyrus neurons (a part of the hippocampus involved in encoding of memories) resulting in histone H3 S10-phosphorylation and K14-acetylation, H4 hyper-acetylation, gene induction and formation of memories of the event. Moreover, glucocorticoid hormones via the glucocorticoid receptor (GR) greatly facilitated the epigenomic mechanisms and cognitive performance. Therefore, we propose that formation of enduring memories of significant events requires an interaction of GRs with the NMDA/ERK/MSK1/Elk-1 signaling pathways to allow an optimal epigenomic activation pattern in dentate gyrus neurons to accommodate their altered neurophysiological function.  相似文献   

20.
The mRNA expression of the major subunits of N-methyl-d-aspartate receptors (NR1, NR2A and NR2B) following ischemia–reperfusion was studied in structures with different vulnerabilities to ischemic insult in the rat brain. The study was performed using quantitative real-time PCR on samples from 3-month-old male Sprague–Dawley rats after global transient forebrain ischemia followed by 48 h of reperfusion. Expression of NMDA receptor subunits mRNAs decreased significantly in all structures studied in the injured animals as compared to the sham-operated ones. The hippocampal subfields (CA1, CA3 and dentate gyrus) as well as the caudate-putamen, both reported to be highly ischemic-vulnerable structures, showed outstandingly lower mRNA levels of NMDA receptor subunits than the cerebral cortex, which is considered a more ischemic-resistant structure. The ratios of the mRNA levels of the different subunits were analyzed as a measure of the NMDA receptor expression pattern for each structure studied. Hippocampal areas showed changes in NMDA receptor expression after the insult, with significant decreases in the NR2A with respect to the NR1 and NR2B subunits. Thus, the NR1:NR2A:NR2B (1:1:2) ratios observed in the sham-operated animals became (2:1:4) in insulted animals. This modified expression pattern was similar in CA1, CA3 and the dentate gyrus, in spite of the different vulnerabilities reported for these hippocampal areas. In contrast, no significant differences in the expression pattern were observed in the caudate-putamen or cerebral cortex on comparing the sham-operated animals with the ischemia-reperfused rats. Our results support the notion that the regulation of NMDA receptor gene expression is dependent on the brain structure rather than on the higher or lower vulnerability of the area studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号